京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为企业带来了竞争优势的4种方式
不久前,“大数据”只是一个时髦的词。如今,“大数据”已成为增长最快的技术之一。根据SNS研究公司的一个新的研究报告,目前全球大数据市场价值为460亿美元,而这个报告预测,到2020年底,全球各行业厂商将在大数据硬件上花费超过720亿美元。
另一个关键的信号是数据中心市场的增长。根据Technavio公司的报告,亚太地区将成为增长最快的数据中心建设市场,其年复合增长率达到17%,到2020年的市场规模将达到200亿美元。这得益于基于云计算的服务产品,消费者数据存储库的挖掘,以及物联网的发展。
然而,如果企业不知道如何使用它来使他们的业务和员工受益,那么该公司就会面临大量数据的压力。如今,有大量的软件企业积极参与组织的大量非结构化数据交互。根据CampaignAsia的统计,2016年将实现大数据的巨大飞跃,该领域将最终实现其宣传的目标。
以下是企业利用大数据获得竞争优势的一些创新的方式。
1.提升客户体验
如今的消费者通过网上购买来控制他们的购物体验,这使得实体商店在分析的帮助下与消费者保持联系至关重要。根据AccentureInteractive公司的一项研究,91%的高绩效客户体验者表示,数据分析对于改善客户体验至关重要。
通过一个实时商店监控平台(RTSMP),具有跟踪客户在商店内浏览商品的能力。美国的RetailNext公司就提供这样的一个平台。通过其集中的SaaS平台,自动收集和分析购物者的行为数据,为零售商提供洞察力,以实时改善客户体验。这些平台可以帮助零售商优化店面布局,并促进商品销售。
通过业务分析软件和零售专业知识,还可以帮助企业更好地了解购物者的旅程,以增加同店销售,减少盗窃,并消除不必要的成本。
目前,RetailNext公司与60多个国家的300多家零售商合作,包括受欢迎的美国连锁品牌Bloomingdale,Sears和Ulta。
其他购物者分析工具(例如Google趋势的购物者分析工具)也可帮助电子商务公司利用客户数据跟踪网站数据。他们可以通过更改价格或网站布局或,以及使用广告来阻止购物者放弃购物车,从而提高销售量。
2.个性化教育材料
教育提供者,特别是高等教育机构,正在感受创新和数字化在日益竞争激烈的教育生态系统发展的压力。根据调查机构Gartner公司预测,2016年全球高等教育支出将增长1.2%,达到382亿美元。
数字学习方法的全球需求从大规模在线课程(MOOC)的日益普及显而易见,例如在Coursera上发现的那些,它是拥有超过2100万用户的MOOC的领导者。该平台与世界各地的顶尖大学和研究所合作,并提供在线课程和认证,如耶鲁大学,北京大学,新加坡国立大学和南洋理工大学。
另外还有一些公司,如欧莱雅和波士顿咨询集团,甚至与Coursera公司合作,通过在线学习解决方案提升移动员工的水平。Coursera公司最近还推出了一个企业平台“CourseraforBusiness”,以满足企业快速发展的培训和发展需求。
数以百万计的人采用具有产生大量学习数据的能力的MOOC。这些数据在自适应学习中被利用,这是一种根据每个学生的独特需求个性化教育材料的方法。
通过大数据创新,自适应学习可以通过自动化内容的定制变得更加个性化。这允许学生接收适合他们个人学习能力和速度的学习内容。美国Knewton公司提供这样的一个业务,使用其大数据基础设施提供数字课程材料,动态和连续适应每个学生的独特需求。教育公司如皮尔森和霍顿-米夫林-哈考特(HMH)这样的教育公司使用Knewton为数百万学生提供数以十亿计的个性化推荐。他们观察到考试成绩提高,高通过率,以及较低的课程退学率。
3.管理社交媒体活动
通过社交媒体渠道的有效监控和参,这对于当今企业获得的竞争优势至关重要。市场营销人员预计将在未来五年内,其社交媒体支出增加近一倍,占总营销预算的21%,而2015年的此类支出仅为11%。企业现在可以使用大数据技术创建一个数字前台,以改善客户体验管理。
例如,社交媒体管理平台提供商Sprinklr公司通过对外部和内部客户数据的分析,帮助企业更深入地了解客户。使用Sprinklr公司提供的技术,企业可以协调在线体验的努力,以获得更好的客户体验。从客户数据收集的见解还允许品牌改善营销覆盖面,品牌宣传,参与,以及客户服务。
例如,Sprinklr公司帮助麦当劳积极为其在美国14000多个地点的6900万名客户提供实时和规模性的服务。Sprinklr公司帮助麦当劳通过梳理近十年的客户数字,并衡量客户对其产品和服务的兴趣。他们推出了12000篇个性化的文章,在Twitter上回复特定客户的请求,而不再使用付费媒体推广。
4.自动化网络威胁检测和响应
如今,企业已经多次沦为网络罪犯的乐园。有些企业失去了大量的运营和私人客户数据。防护厂商赛门铁克公司发现,仅2015年,超过5亿条个人记录被盗或丢失。因此,从2017年到2021年,全球网络安全支出预计将超过1万亿美元。
随着黑客行为变得越来越普遍,企业需要复杂和预测性的解决方案来保护他们的业务数据和数字资产。随着移动设备和基于云计算的应用程序的激增,存在更多易受攻击的端点,如工作站,移动设备和服务器。而网络攻击也更具针对性和复杂性,使传统周界的防御措施无效。
像CounterTack这样的网络安全解决方案利用大数据分析来检测,分析和响应恶意软件或嵌入式代码,可以显著地减少发现,并防止此类违规或威胁所需的时间。
此外,还可以采用安全和信息事件管理(SIEM)工具,例如LogRhythm。也已广泛部署在跨越多行业和垂直行业的大型企业中。这些平台采用大数据架构构建,允许其通过大量的设备和应用程序生成机器数据。机器学习和行为分析技术允许企业标出异常数据。
大数据越来越多地以创新的方式存在,并在以前无法想象的领域中使用,成为企业业务发展的强大的推动者。企业应考虑利用分析平台和解决方案的帮助发展业务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15