京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析也讲究艺术
数据分析也讲究艺术,如何理解?
我们先来分析一下数据分析的流程:确定目标>收集数据>分析数据>可视化展示>评价。再思考其间参与的人员,谁来操作这些数据:数据分析师、业务员、IT人员。谁来需要这些分析:业务层、领导层、老板。
对于数据分析的痛点,分析师希望快、准确、最好能为清晰的逻辑分析提供帮助。业务层、领导层希望好看、直观,关键的指标能够展示得全面。
所以,基于这样的思考,数据分析的“艺术性”可理解为数据的行为艺术、分析的行为艺术和可视化艺术。
数据的行为艺术
数据的处理关键在于准确和严谨。数据最初从各系统采集、导入预处理、统计、挖掘,会涉及方方面面的问题,比如:
1、统一口径的问题
数据源存在于多系统,是统计口径不一的主要问题。统一口径的问题实质是数据管理的问题,关键在于改善统计方法,提高统计质量。填报、表单这类工具从源头规范数据。
例如,同一内容在不同系统不同的叫法;同一内容在不同系统不同的分类法;同一内容在不同系统不同的统计规则;手工数据都需要注意校验。
2、数据缺失
数据缺失的问题有人为、有字段问题。缺失值处理可以采用替代法(估值法),利用已知经验值代替缺失值,维持缺失值不变和删除缺失值等方法。具体方法将参考变量和自变量的关系以及样本量的多少来决定。
分析的艺术
分析关键在于方法,不同的分析相信不同的人由不同的方法。你可以吭哧吭哧粘贴复制到excel,进行简单的计算、出图,然后粘贴复制到PPT,只要数据是静态而准确的。也可以利用FineReport这样的报表工具做企业级常用的动态报表、复杂报表。
逻辑上,对比分析、分类分析、分布分析、相关分析这些基础的分析帮助在可视化呈现上有直观的展示。
可视化艺术
可视化的艺术不在于“炫”,而在于“人性化”。人们意识到数据上的重要性,却没有从文化上完成这样的转变,可视化可以帮助人们意识到这样的转变,从而达到实用的最终目的。
比如以上的信息化视图,色彩美观,但是帮助我获得有效的数据对比有困难。
如今数据图的复杂和创新主要源于展示维度的增加和形态的变化,希望数据的展示饱满而夸张。
但实际上,可视化数据关键在于信息的传递,让人一看就对数据、问题一目了然,其次再谈美观、功能。数据的展示现寻求直观再讲求全面,譬如以下用FineBI做的分析图。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16