
大数据四要素“预警、预测、决策、智能”
当我们提到大数据的要素特征,往往会想到从大数据概念诞生之日起就开始流传的4V理论,即海量、价值、快速、丰富。随着大数据的迅速发展,当拥有足够体量的数据后,人们发现,如果数据之间没有交互性,无法实现互联互通,即便是获取再丰富的数据也无法实现超越数据本身之外的价值。
九次方大数据创始人王叁寿提出,大数据的四要素是预警、预测、决策、智能。四点要素从功能的角度诠释了大数据的核心。王叁寿认为,最终实现这些功能还需要回归到大数据应用,唯有通过应用才能让大数据真正“着陆”。这一观点在全国如火如荼推动大数据产业发展之际,值得决策者去思考与深挖。
王叁寿解释,预警即通过数据采集、数据挖掘、数据分析,对已经存在的风险发出预报与警示,如通过数据分析发现某煤炭企业存在安全隐患;预测是指立足于纵向时间轴,对相对长时间内某些问题的判断从而形成指导,如根据气象数据预测农作物种植情况;决策是指通过所有相关数据的联动,形成基于数据和分析之上的决策或结论,例如,通过交管局与扶贫办数据的联动可以形成“谁是伪扶贫对象”的结论;智能,即当我们基于对现实问题的分析与判断,通过技术手段实现智能化的行为,例如,电商平台上一些恶意刷单和恶意注册的情况,通过数据分析与判断,就可以生成智能拦截。
王叁寿提出的大数据四要素,已经脱离数据本身的特点,让其从应用角度出发来实现价值。换句话说,大数据不是静态地存在,而是与周边数据发生碰撞和聚核。在某种程度上,大数据可以变成政府或企业的洞察力与行动力。这就形成大数据正确的表现形式:以往我们谈到的智慧交通管理系统、金融精准营销系统、旅游服务系统等,更多地是指向某一功能或作用,而大数据应该带给我们的不仅仅是停留在基于信息化上的某种功能之上,而是形成一个完整的决策系统,能够指导各个功能根据不同场景做出相应的正确回应。
举例来说,以往对安全生产监测会停留在对事故的统计与处理结论统计上,但通过大数据应用平台,可以将危险源、隐患、事故等的数据全部联动起来。对一个企业是否存在潜在危险的判断,不再是事故后的数据统计,而是通过监测企业外围数据,发现潜在风险。例如以周边人口密度、建筑物情况等数据来模拟最大损害情况,同时联动周边可调动的资源,如医疗情况、救护车等来实施救援。一方面,大数据可以发现安全隐患,尽早采取行动;另一方面,一旦企业出现安全事故,大数据能够形成整体的智能解决方案,实现对事故快速处置。
应用思维,就是大数据思维
虽然目前大数据被看做是基础性资源和重要生产力,但如何实现其应有的价值,仍在摸索当中。当前,各地纷纷兴建大数据中心。大数据中心实现了基础数据资源的存储、分类、整理,使得数据资源进入规模化时代。然而,如果以此为目标发展大数据相当于走入误区。“海量数据”、“大规模数据”等大数据中心提出的概念只着眼于数据规模本身,未能充分反映数据爆发时代下的数据处理与应用需求。
王叁寿认为,发展大数据产业,无论是基于技术开发、产品研发还是大数据公司的商业模式,仍然需要以“预警、预测、决策、智能”的大数据思维来落实数据应用,实现数据价值。事实上,这也正是大数据的应用思维,如果大数据不能实现这四大功能要素,价值迸发将会受到约束。
目前,王叁寿带领九次方大数据开发出了4000多个政府大数据应用场景,而这些应用场景已经成功让大数据在政府治理与政务管理领域落地,并建设了相应的大数据产品平台。
王叁寿将这个时代定义为“大数据应用的时代”,大数据的核心价值,正是需要通过基于在对事实数据累计的基础上,通过大数据采集、挖掘、分析等工具实现对当前形势或问题的科学预判以及对未来形势的科学预警,从而更科学、更智能地做出决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04