
各行都和大数据攀关系 但数据不落地终究是场空
时尚界有流行趋势,科技圈也是如此,大数据就是近几年科技圈的流行趋势,不管什么都要和大数据沾个边,但似乎并没有什么新的应用让人切身感受到大数据带来的惊喜,给人的感觉总是炒作的意味更浓
科技公司或者企业、政府并不是他们不想做好,而是受到了制约,主要是两个方面的制约,一个是数据量小且难以利用,另一个是转化经验少实施困难。
为什么说数据小呢
首先是数据化程度很低。只是近几年政府才开始在使用电子信息化办公平台的时候才积累了点数据,早年大量的数据基本都是以文件及纸质的形式存储在政府办公楼仓库里,而纸质的数据我们是无法使用的。想要将这些纸质数据化是一个非常庞大的工程,需要耗费巨大的人力物力,而这关键性的一步恰是一个吃力不讨好的活,所以一般承接政府大数据的公司也都很少去触碰。
另外就是数据割裂,各个部门的数据都和宝贝似地保护着,生怕其他部门抢走,这就导致了数据的割裂,无法整合。比如要进行一个智慧城市的建设,至少需要交通数据、气象数据、人社数据等等部门的数据进行综合考量,但是每个部门都把自己手里那点数据看的和宝贝似得,碰都不让人碰,又何谈数据整合呢?
所以很多政府大数据工程到最后就流于表面,最后把手头少的可怜的数据做做数据可视化,弄一些大屏幕,展示出来给领导汇报一下就结项了。
第二个就是转化经验少
比如农业大数据,是有不少的农业数据和气象数据,甚至还有粮食收购数据、农产品价格数据等等,但是即使这些数据全部都开放给施工方,如何使用还是一个大的问题,如何利用现有的数据通过数据挖掘、数据分析让这些数据产生价值转化、形成生产力,这又是面临的新的问题。
除此之外,中国的农作方式也是一个很大的制约因素,家庭为单位的小作坊式的田块化种植,无法集约化管理,这就导致了农民种什么、什么时候种都有自主权,那么现状是什么呢?
以现在最大的渤海粮仓为例,在山东几个县市为试点的渤海粮仓项目,最后落地后的成果是什么呢?所谓物联网 大数据的实践到最后就是找几块试验田,插上杆子,装上几个传感器和摄像头,然后做一下数据展示,甚至很多地方的传感器和摄像头都被农民卸走了,如何指导生产,又如何将农业机械制造产业链打通呢?
最后
搞大数据不是喊喊口号,做做样子就能搞起来的,这需要专注并持续的投入,不一定有多大的数据,别只顾着建机房,即使是依靠着现有的几百万条数据,通过场景化的应用分析,给出人们建议,让大家切实的得到实惠,让老百姓切实看到大数据带来的好处,这才应该是大数据的必须经历的过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23