
各行都和大数据攀关系 但数据不落地终究是场空
时尚界有流行趋势,科技圈也是如此,大数据就是近几年科技圈的流行趋势,不管什么都要和大数据沾个边,但似乎并没有什么新的应用让人切身感受到大数据带来的惊喜,给人的感觉总是炒作的意味更浓
科技公司或者企业、政府并不是他们不想做好,而是受到了制约,主要是两个方面的制约,一个是数据量小且难以利用,另一个是转化经验少实施困难。
为什么说数据小呢
首先是数据化程度很低。只是近几年政府才开始在使用电子信息化办公平台的时候才积累了点数据,早年大量的数据基本都是以文件及纸质的形式存储在政府办公楼仓库里,而纸质的数据我们是无法使用的。想要将这些纸质数据化是一个非常庞大的工程,需要耗费巨大的人力物力,而这关键性的一步恰是一个吃力不讨好的活,所以一般承接政府大数据的公司也都很少去触碰。
另外就是数据割裂,各个部门的数据都和宝贝似地保护着,生怕其他部门抢走,这就导致了数据的割裂,无法整合。比如要进行一个智慧城市的建设,至少需要交通数据、气象数据、人社数据等等部门的数据进行综合考量,但是每个部门都把自己手里那点数据看的和宝贝似得,碰都不让人碰,又何谈数据整合呢?
所以很多政府大数据工程到最后就流于表面,最后把手头少的可怜的数据做做数据可视化,弄一些大屏幕,展示出来给领导汇报一下就结项了。
第二个就是转化经验少
比如农业大数据,是有不少的农业数据和气象数据,甚至还有粮食收购数据、农产品价格数据等等,但是即使这些数据全部都开放给施工方,如何使用还是一个大的问题,如何利用现有的数据通过数据挖掘、数据分析让这些数据产生价值转化、形成生产力,这又是面临的新的问题。
除此之外,中国的农作方式也是一个很大的制约因素,家庭为单位的小作坊式的田块化种植,无法集约化管理,这就导致了农民种什么、什么时候种都有自主权,那么现状是什么呢?
以现在最大的渤海粮仓为例,在山东几个县市为试点的渤海粮仓项目,最后落地后的成果是什么呢?所谓物联网 大数据的实践到最后就是找几块试验田,插上杆子,装上几个传感器和摄像头,然后做一下数据展示,甚至很多地方的传感器和摄像头都被农民卸走了,如何指导生产,又如何将农业机械制造产业链打通呢?
最后
搞大数据不是喊喊口号,做做样子就能搞起来的,这需要专注并持续的投入,不一定有多大的数据,别只顾着建机房,即使是依靠着现有的几百万条数据,通过场景化的应用分析,给出人们建议,让大家切实的得到实惠,让老百姓切实看到大数据带来的好处,这才应该是大数据的必须经历的过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08