京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下传统数据分析在商业运用中的诸多弊端
提到“大数据分析”,人们近两年对这个词并不陌生,国内媒体对于有关“大数据”及“数据分析”概念的大范围炒作,使得人人都知道意识到了“大数据”时代的到来。无论在哪家企业的商业模式里,大数据分析近乎成为了一种标配,而似乎一夜之间,国内各型各色的数据分析企业也如雨后春笋般冒了出来。
的确,大数据时代已经到来。
根据调查,去年全球大数据和业务分析总收入约为1229亿美元,同比近三年内数据,呈现较大增幅趋势。毫无疑问,随着大数据时代的到来,大数据分析技术对各行各业商业化运作都已产生重大影响。 尤其在一些垂直领域,包括汽车、家装、电子产品等行业在全球市场大数据分析技术运用的最多,这部分全球收入共占据约228亿美元。
在中国,我们熟知的很多知名企业都已经将大数据分析技术运用在自己的服务中。例如,阿里通过分析用户购物习惯进行商品类目推荐,滴滴通过数据计算为用户置配车辆,京东利用商品库存分析进行仓储管理。更多的中小企业也开始意识到大数据分析的重要性,并加入到大数据分析的行列之中。
但是随着“大数据”和“数据分析”概念炒作的升温,也让很多企业CIO/CTO们对其产生“畏惧”。一方面,企业发展中不可避免的充斥着很多无从分析的非结构化数据。在大数据分析中这类数据虽然至关重要,但目前我国绝大多数的数据分析公司还尚不具备对其分析的能力。而传统的结构化数据分析在国内仍存在不科学、周期长、性价比低及无法产生直接经济效益等弊端。另一方面,由于大数据分析具有海量的数据规模、快速的数据流动、多样的数据类型和价值密度低等特征,企业通过部署及使用大数据工具可以获取更精准的资源,从而提高自身利润率和竞争优势。因此,在庞大的市场需求下。尽管不少数据分析公司不具备大数据分析的能力,还是被驱使着进入到这片红海之中,这也使得目前国内市场数据分析公司水平良莠不齐。
而企业即使了解大数据分析所能带来的红利,也因对大数据分析缺乏基础认知,不能真正选择适合自身业务的数据分析模式。很多企业级的客户自身在进行大数据分析时,仍以结构化数据分析为主,忽略了相对内涵丰富的非结构化数据。
国内企业进行结构化数据分析通常采取“招标+外包”的传统模式。企业级客户按照历史经验应先建立起自己的数据分析KPI(关键绩效指标),然后以此为参照将整个数据分析任务外包给第三方数据公司,经过数月的分析后,由数据公司将分析结果返还给甲方企业。企业依据分析结果再进行策略调整。
在面对如今数据爆炸的时代,传统数据分析在商业运用中暴露的诸多弊端,主要可以归结为以下七条:
第一,非结构化数据往往内涵更为丰富并且至关重要。目前我们所认知的数据分为两大类,一类可以用数据或统一的结构加以表示,被称之为结构化数据,例如数字、符号等,而无法用数字或统一结构表示的另一类信息则被称为非结构化数据,如文本、图像、声音、网页等。
企业以往使用的传统数据分析系统仅仅只能对结构化和关系性的数据进行处理分析,这部分数据一般是已知且容易理解的,通过抽样读取很小一部分数据集来对整个数据集进行预判。而在企业发展过程中,所产生的数据其存在形式往往各式各样,非结构化数据分析正是基于企业海量数据处理分析,所得出的结果也更为精准。
第二,KPI非数据驱动生成,缺乏科学性。国内企业数据分析前制定KPI标准常常以人为经验得出,而不是由数据驱动并且实时生成的,因此造成的结果则是KPI常年不变,并且缺乏科学性。在最终数据分析上会存在较大误差。
第三,数据分析时效性差。国内企业在进行大数据分析时采用第三方外包的方式,整个周期至少也要数月的时间,往往返还回结果时,企业内部的相关数据已经完全改变了。
第四,浪费了企业内部的分析师资源。不少企业都用有自己的内部分析师,采用外包的方式,完全浪费了这部分资源,企业从经济效益上很不划算。而且在数据衔接上,由于第三方数据公司并不清楚企业的详细情况,通过数据分析无法真正了解数据背后所蕴含的实际原因。
第五,数据安全性无法保障。外包的数据安全性问题一直是国内企业CTO的老大难问题,因为一些企业核心数据会涉及到商业机密,企业若想确保数据以安全的方式交予第三方大数据公司,往往需要耗费额外的时间和经济成本。
第六,数据分析结果不能与企业经济效益直接挂钩。由于第三方数据公司的介入,国内企业在得到数月的分析结构后,从内部执行上并不能很好地将分析结果运用到企业经济效益的改善上,数据分析最终成为了一堆没用的数字。
第七,第三方大数据公司分析能力有限。国内大部分第三方公司由于缺乏动态、数据驱动的数据分析工具,更多时候也仅是依照经验制定KPI和进行数据分析,这样分析出的结果同样缺乏科学性。
正是基于上述弊端,才使国内企业陷入了数据分析的困局。其实,非结构化数据的分析,是每个企业都是非常渴望的。但由于受国内技术的制约以及工具的缺乏,公开市场上鲜有出色的分析平台。大数据分析的核心技术只掌握在一些顶尖企业和专业数据分析公司手中,通常价格不菲。
我们相信,在未来的大数据分析技术中,非结构化数据分析将逐渐取代传统的结构化数据分析技术,通过海量的数据分析来为企业应对更为复杂的商业模型,从而替企业提高市场洞察力并创造价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01