京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下传统数据分析在商业运用中的诸多弊端
提到“大数据分析”,人们近两年对这个词并不陌生,国内媒体对于有关“大数据”及“数据分析”概念的大范围炒作,使得人人都知道意识到了“大数据”时代的到来。无论在哪家企业的商业模式里,大数据分析近乎成为了一种标配,而似乎一夜之间,国内各型各色的数据分析企业也如雨后春笋般冒了出来。
的确,大数据时代已经到来。
根据调查,去年全球大数据和业务分析总收入约为1229亿美元,同比近三年内数据,呈现较大增幅趋势。毫无疑问,随着大数据时代的到来,大数据分析技术对各行各业商业化运作都已产生重大影响。 尤其在一些垂直领域,包括汽车、家装、电子产品等行业在全球市场大数据分析技术运用的最多,这部分全球收入共占据约228亿美元。
在中国,我们熟知的很多知名企业都已经将大数据分析技术运用在自己的服务中。例如,阿里通过分析用户购物习惯进行商品类目推荐,滴滴通过数据计算为用户置配车辆,京东利用商品库存分析进行仓储管理。更多的中小企业也开始意识到大数据分析的重要性,并加入到大数据分析的行列之中。
但是随着“大数据”和“数据分析”概念炒作的升温,也让很多企业CIO/CTO们对其产生“畏惧”。一方面,企业发展中不可避免的充斥着很多无从分析的非结构化数据。在大数据分析中这类数据虽然至关重要,但目前我国绝大多数的数据分析公司还尚不具备对其分析的能力。而传统的结构化数据分析在国内仍存在不科学、周期长、性价比低及无法产生直接经济效益等弊端。另一方面,由于大数据分析具有海量的数据规模、快速的数据流动、多样的数据类型和价值密度低等特征,企业通过部署及使用大数据工具可以获取更精准的资源,从而提高自身利润率和竞争优势。因此,在庞大的市场需求下。尽管不少数据分析公司不具备大数据分析的能力,还是被驱使着进入到这片红海之中,这也使得目前国内市场数据分析公司水平良莠不齐。
而企业即使了解大数据分析所能带来的红利,也因对大数据分析缺乏基础认知,不能真正选择适合自身业务的数据分析模式。很多企业级的客户自身在进行大数据分析时,仍以结构化数据分析为主,忽略了相对内涵丰富的非结构化数据。
国内企业进行结构化数据分析通常采取“招标+外包”的传统模式。企业级客户按照历史经验应先建立起自己的数据分析KPI(关键绩效指标),然后以此为参照将整个数据分析任务外包给第三方数据公司,经过数月的分析后,由数据公司将分析结果返还给甲方企业。企业依据分析结果再进行策略调整。
在面对如今数据爆炸的时代,传统数据分析在商业运用中暴露的诸多弊端,主要可以归结为以下七条:
第一,非结构化数据往往内涵更为丰富并且至关重要。目前我们所认知的数据分为两大类,一类可以用数据或统一的结构加以表示,被称之为结构化数据,例如数字、符号等,而无法用数字或统一结构表示的另一类信息则被称为非结构化数据,如文本、图像、声音、网页等。
企业以往使用的传统数据分析系统仅仅只能对结构化和关系性的数据进行处理分析,这部分数据一般是已知且容易理解的,通过抽样读取很小一部分数据集来对整个数据集进行预判。而在企业发展过程中,所产生的数据其存在形式往往各式各样,非结构化数据分析正是基于企业海量数据处理分析,所得出的结果也更为精准。
第二,KPI非数据驱动生成,缺乏科学性。国内企业数据分析前制定KPI标准常常以人为经验得出,而不是由数据驱动并且实时生成的,因此造成的结果则是KPI常年不变,并且缺乏科学性。在最终数据分析上会存在较大误差。
第三,数据分析时效性差。国内企业在进行大数据分析时采用第三方外包的方式,整个周期至少也要数月的时间,往往返还回结果时,企业内部的相关数据已经完全改变了。
第四,浪费了企业内部的分析师资源。不少企业都用有自己的内部分析师,采用外包的方式,完全浪费了这部分资源,企业从经济效益上很不划算。而且在数据衔接上,由于第三方数据公司并不清楚企业的详细情况,通过数据分析无法真正了解数据背后所蕴含的实际原因。
第五,数据安全性无法保障。外包的数据安全性问题一直是国内企业CTO的老大难问题,因为一些企业核心数据会涉及到商业机密,企业若想确保数据以安全的方式交予第三方大数据公司,往往需要耗费额外的时间和经济成本。
第六,数据分析结果不能与企业经济效益直接挂钩。由于第三方数据公司的介入,国内企业在得到数月的分析结构后,从内部执行上并不能很好地将分析结果运用到企业经济效益的改善上,数据分析最终成为了一堆没用的数字。
第七,第三方大数据公司分析能力有限。国内大部分第三方公司由于缺乏动态、数据驱动的数据分析工具,更多时候也仅是依照经验制定KPI和进行数据分析,这样分析出的结果同样缺乏科学性。
正是基于上述弊端,才使国内企业陷入了数据分析的困局。其实,非结构化数据的分析,是每个企业都是非常渴望的。但由于受国内技术的制约以及工具的缺乏,公开市场上鲜有出色的分析平台。大数据分析的核心技术只掌握在一些顶尖企业和专业数据分析公司手中,通常价格不菲。
我们相信,在未来的大数据分析技术中,非结构化数据分析将逐渐取代传统的结构化数据分析技术,通过海量的数据分析来为企业应对更为复杂的商业模型,从而替企业提高市场洞察力并创造价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22