京公网安备 11010802034615号
经营许可证编号:京B2-20210330
更多的数据会带来更好的决定
在「大数据」时代的很多领域流传着这样一句谚语:如果你拥有的数据越多,那么所能做出的决定就会更加得精准。那么在现实生活中真的是这样吗?又或者如我过去所指出的,我们现在所获得的分析比以前更没有代表性吗?
一个非常典型的例子就是全球肥胖率,让我们意识到拥有更多的数据,甚至是实时数据,如果没有意愿或者没有足够毅力和耐力采取实际行动那么这些数据的价值是微乎其微的。当代的普通市民从未像现在一样存在足够多的方式来监控健康的方方面面。联网体重秤在每天清晨能够记录我们的体重;智能手机端的条形扫描能够记录我们消耗的每个卡路里;心率传感器和血氧传感器能够每隔几秒监控我们的剧烈运动;计步器能够追踪你的步数;从血压计到葡萄糖计的大量其他医疗设备都能传达关乎我们健康生活的精准数据。而这个不断膨胀的市场甚至出现了要求血液和基因测试的产品。
那么为什么在这些能够频繁接触各种健康监测设备的国家内肥胖率却不断刷新历史最高记录?我们只需要点几下鼠标就能基于最近几天的锻炼方式和每天记录的体重变化来提供独立个体的理想卡路里摄入,但是为何这些精准的数据无法转换成为完美的健康哪?这是一个非常值得深思的问题,我们正激发出「庞大的创新力」来发掘欺诈设备的各种方式,而不是将它们作为工具来改善我们的健康。
问题是访问这些数据并非简单地等同于充分利用这些数据。正如我在今年三月份所指出的,美国政府不乏庞大的精细数据,但是缺乏处理数据的专业技能和授权并将所有的数据转换到具体措施。一家典型的美国服装公司通常具备庞大的数据监测从 T 恤开始缝的第一针开始到 T 恤被消费者购买并带出商店的整个过程的运作。而问题是如何将这些复杂的数据串联整合起来用于解决商业挑战
我所接触的太多公司和机构都视「大数据」孵化和数据分析是充满神奇力量的解决方案,简单地认为只需要获得足够多的数据能够立即推动现有的业务。近年来多家公司疯狂投资物理和数字传感器并尝试和现有业务进行融合,然而他们都还没有搞清楚所有这些数据希望能够解答什么样的问题,且在这样匆忙地部署传感器到现有公司生态系统中是否会产生盲点等等。事实上,这种情况已经在社会多媒体分析领域存在,我经常能够看到公司凭借令人难以置信的高分辨率社交媒体地理上来映射社会观点,与此同时却忽略了在这些地图上依然处于黑暗中的地区,创建了其他分析师在其他分析渠道从未关注的盲区。
在数据社区存在这样一种共识:充足的数据就像是一锅粥,而噪声和偏见就像老鼠屎能够破坏整锅粥的味道。而问题是当我们不断往锅中投入食材(数据),整锅粥并不会因此重新回归到正确的味道,反而会增强偏见的存在。在这样的情况下,小型且更平衡的数据池或许可以散发出更迷人的香气。事实上,正是这种信念在庞大的数据面前催生出纠正导致情感分析领域迷失所有弊端的能量。
信息过载同样也是驱动迫使人类朝人工智能(AI)聊天机器人发展的重要因素。当企业争夺越来越多的大数据,他们已经不再能够在庞大的显示器面前简单地挖掘包含数千项指标的所有数据。他们需要人工智能来对所有数据进行筛选并总结预判事物未来的走向。
事实上,昨天华盛顿邮报刊登了极具震撼力的新闻报道,当医生被接二连三的自动警报淹没的时候那些在医院接受治疗的患者却承受了极大的痛苦。在未来电子医疗记录系统将会聚合不断发展的详尽医疗指标,通过减少医疗错误的精准算法让接近于无限次的合理交互和丰富的领域知识储备逐渐成型。换言之,你可以设想乘坐一辆无人驾驶汽车在繁忙的城市街道穿行,那么人类驾驶员可以幸福地不去关注车辆前方有什么东西,无人驾驶汽车的丰富传感器能够避免数千种潜在危险并预估实际上可能会产生什么后果。以医疗警报为例,合法警报容易在大量的误报中丢失,那么同样可以引申这样的观点–大部分网络安全警报容易在合法却不恰当的流量上丢失。
综上所述,或许大数据今后的焦点应该更少的集中在通过任意部署来收集越来越多的数据,而是更多的聚焦到如何筛选能够反应所提问题的小型辅助数据流上。又或者随着人工智能的成熟,在未来能够竞争应付无限庞大的数据并解决处理所有的问题。在文章的最后,给企业的一点建议是必须更少的依赖数据收集而应该花费更多的时间和精力去深挖如何对数据进行分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22