
日前,CDA协会会员们在波士顿举办了一期沙龙活动,2位专家各自就不同领域的数据分析应用进行了分享,并重点探讨了数据分析人才 的培养。
一、嘉宾信息
Jared Christensen是Pfizer的高级研发总监,他在Pfizer工作有6年了。在加入Pfizer之前,他在Wyeth工作了5年,一直到2010年10月Pfizer收购Wyeth为止。Jared于2004年在哈佛公共健康学院完成他的博士研究。
Marie Gayron是Verisk Health公司人群健康部门的研究科学家。她被广为人知,是因为她开发了强大的算法来预测昂贵的事件,确定高风险人群,将数据转化为可执行的报告解决方案,通过自动化和数据可视化来提高流程效率。Marie女士,拥有塞勒姆州立大学理学学士学位和波士顿大学公共健康硕士学位。
二、公司信息
Pfizer Inc.(辉瑞公司)创建于1849年,迄今已有160多年的历史,总部位于美国纽约,是目前全球最大的以研发为基础的生物制药公司。辉瑞公司的产品覆盖了包括化学制药、生物制剂、疫苗、健康药物等诸多广泛而极具潜力的治疗及健康领域,同时其卓越的研发和生产能力处于全球领先地位。
Verisk Analytics Inc.总部位于美国新泽西州泽西城,是与美国房地产和意外保险风险相关的保险精算和保险数据规模最大的集成商。该公司于2009在美国上市。
三、 活动总结
1) 数据科学家职位
在美国,数据科学工作是薪资最高的工作之一;并且,对于在某一特殊领域(如:健康医疗、金融等)拥有实质性知识的数据科学家需求量极高。然而事实情况是,现有的博士或者硕士课程,难以满足巨大的数据科学家人才培养缺口;但是这也为教育或培训项目提供了一个培养数据科学家的机会。
2) 流行的统计软件
无论是在制药公司还是医疗保健公司,SAS依然是数据管理、分析和制作报告的常用统计软件。同时,在实践中需要熟悉数据库语言(SQL)。
3) 流行的统计技术
在制药公司,大部分的统计工作是关于进行临床试验。因此,学习掌握基本的设计和进行临床试验的原则(如:计算样本的大小和重要性)是必不可少的技能。如今,序列设计和贝叶斯自适应设计正在扮演更加重要的角色。
4) 非统计专业
如果你在学校没有学习过统计学课程,但是想要成为一名数据科学家,那最好学习一些基本的统计学知识和SAS编程语言。一个入门的好方法就是,加入一家咨询公司或者CRO,从而在不同行业中积累数据分析经验。尽管一些工作岗位要求统计学或者生物统计学博士学位,但是没有上述学位的一些人也能够拥有较强的数据分析技能。
5) 数据分析培训项目
在数据分析领域提供一些培训课程会是一件很有益的事情。然而,不同的行业需要不同的数据分析技能,课程设计应该考虑到这一点。咨询公司里面的数据科学工作会看重面试者的证书拥有情况,大的制药公司需要统计学相关学位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23