京公网安备 11010802034615号
经营许可证编号:京B2-20210330
日前,CDA协会会员们在波士顿举办了一期沙龙活动,2位专家各自就不同领域的数据分析应用进行了分享,并重点探讨了数据分析人才 的培养。
一、嘉宾信息
Jared Christensen是Pfizer的高级研发总监,他在Pfizer工作有6年了。在加入Pfizer之前,他在Wyeth工作了5年,一直到2010年10月Pfizer收购Wyeth为止。Jared于2004年在哈佛公共健康学院完成他的博士研究。
Marie Gayron是Verisk Health公司人群健康部门的研究科学家。她被广为人知,是因为她开发了强大的算法来预测昂贵的事件,确定高风险人群,将数据转化为可执行的报告解决方案,通过自动化和数据可视化来提高流程效率。Marie女士,拥有塞勒姆州立大学理学学士学位和波士顿大学公共健康硕士学位。
二、公司信息
Pfizer Inc.(辉瑞公司)创建于1849年,迄今已有160多年的历史,总部位于美国纽约,是目前全球最大的以研发为基础的生物制药公司。辉瑞公司的产品覆盖了包括化学制药、生物制剂、疫苗、健康药物等诸多广泛而极具潜力的治疗及健康领域,同时其卓越的研发和生产能力处于全球领先地位。
Verisk Analytics Inc.总部位于美国新泽西州泽西城,是与美国房地产和意外保险风险相关的保险精算和保险数据规模最大的集成商。该公司于2009在美国上市。
三、 活动总结
1) 数据科学家职位
在美国,数据科学工作是薪资最高的工作之一;并且,对于在某一特殊领域(如:健康医疗、金融等)拥有实质性知识的数据科学家需求量极高。然而事实情况是,现有的博士或者硕士课程,难以满足巨大的数据科学家人才培养缺口;但是这也为教育或培训项目提供了一个培养数据科学家的机会。
2) 流行的统计软件
无论是在制药公司还是医疗保健公司,SAS依然是数据管理、分析和制作报告的常用统计软件。同时,在实践中需要熟悉数据库语言(SQL)。
3) 流行的统计技术
在制药公司,大部分的统计工作是关于进行临床试验。因此,学习掌握基本的设计和进行临床试验的原则(如:计算样本的大小和重要性)是必不可少的技能。如今,序列设计和贝叶斯自适应设计正在扮演更加重要的角色。
4) 非统计专业
如果你在学校没有学习过统计学课程,但是想要成为一名数据科学家,那最好学习一些基本的统计学知识和SAS编程语言。一个入门的好方法就是,加入一家咨询公司或者CRO,从而在不同行业中积累数据分析经验。尽管一些工作岗位要求统计学或者生物统计学博士学位,但是没有上述学位的一些人也能够拥有较强的数据分析技能。
5) 数据分析培训项目
在数据分析领域提供一些培训课程会是一件很有益的事情。然而,不同的行业需要不同的数据分析技能,课程设计应该考虑到这一点。咨询公司里面的数据科学工作会看重面试者的证书拥有情况,大的制药公司需要统计学相关学位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06