京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言之纵向数据分析:多级线性增长模型2
这篇文章已经是纵向数据分析系列的第三篇了。之前,我们介绍了什么是纵向数据,我们如何把长型的数据集转换成纵向的数据集,并通过建立相应的多级模型进行分析。显然,仅仅介绍基本的多级模型并不足以对虚拟随机对照实验数据集进行分析。这篇文章则延续之前的分析,并介绍一种不错的方法来处理多级模型里的治疗效果问题。
和往常一样,我们还是先创建一个纵向数据集,然后把它转成长型的格式。
这是一个RCT数据集,也就说明,这里潜在存两个以疗效分组的差异。上一次,我们没有考虑异质性,而仅仅对两个组的普通疗效进行了细分。从直觉上看,我们可以添加治疗变量来修复这个模型,从而抓到组间的差异。
这里,我们任然使用lmerTest包是因为它允许修正模型的检验使用自由度。模型的公式和是和上次的一样,除非我们把治疗变量tx作为独立变量。
从上述的summary里的信息可以很明显的看到,time和tx这两个变量都相当显著,而接受B治疗的人群在抑郁症得分上比接受A治疗的人群低2.34分。那么,我们是否可以认为,B治疗方案效果更好?绝对不是。模型m1实际上并不合适对纵向数据集里的组间差异进行比较。m1里的治疗效果,其实也就是一段时间内的平均治疗效果。换句话说,治疗方案A和治疗方案B的疗效所导致的分差在-2.34分,其实只不过是1,2,3时间段内抑郁症均分的差。这是RCT,所以,我们所期待的志愿者参与两组治疗方案里时间段1的差要小于1。我们对两组疗效的均值差异感兴趣,而现在的轨迹在时间段2、3里存在差异。
这个概率可能对初学者来说有点复杂,但是其执行过程很简单,我们只需要添加交互变量time和tx。
在R,我们可以使用:符号来表明变量间的交互关系。因此,我们可以这样设置:time+tx+time:tx。但是,更简短的写法是:timetx。操作符要R涵盖主要变量和治疗疗效。此时,使用操作符就能简单实现各个效应的展示。请记住,操作符也可用于高维变量交互。比如,ABC就要R包含三个主要的效应,三个两两交互的效应,以及一个三元交互效应。
现在,我们从m2模型中获得一个三元交互关系。在这个模型当中,time效应指的就是疗效A(这是特定条件下的疗效和疗效时间的交互),而txB效应就是时间点为0时的效应(数据集里一个虚的时间点)。这个术语解释起来有点复杂:系数值反映了每个时间段内两种治疗方案的疗效上的差异,其条件是取平均时间和治疗效果。口头上说,人们可以理解的是,这表明两组治疗方案是如何随着时间的推移而不同。对于每个单位时间内的增长(即,从时间段1到时间段2),在完成平均治疗效应差的分析以后,接受B治疗方案的参与者理论上在抑郁症得分方面比接受A治疗方案的要低2.88分。所以,在时间段2内,接受B治疗方案的参与者得分差是 -2.88 x 2 + 3.43 = -2.33,而在时间段3内,接受B治疗方案的参与者得分差是-2.88 x 3+ 3.43 = -5.21。我们应当时刻注意,在一个给定的时间段里对比疗效差的时候,主要疗效以及疗效变量间的交互。但是,为什么要这样?你不妨设置分析一下,当你忽略了主要治疗效应的时候,你在时间段1内所得到的疗效差是怎样的情形。
我可以告诉你,模型m2比m1和m0(上一篇文章所采用的模型)都要好,原因在于,这个数据集是我们自己创建的。但在实际生活中,我们会在选择最好的一个模型的时候会遇到很多困难。其中一种选择的方式就是,按照我们之前所讲的,使用summary()函数,以此算出额外变量的统计显著性。其它一个常用的方法就是使用方差分析(ANOVA)表(仅仅针对嵌套模型),而这种方法适合用于这个模型。
这里,我们使用anova()对m0、m1和m2模型进行方差分析,原因在于我们把m0嵌套于m1,然后把m1嵌套于m2。如果还有另外的子集,我们就把模型嵌套到那个子集上。换句话说,含有独立变量A、B的模型则嵌套于含有变量A、B、C的模型中。
如果你做过方差分析,那这个方差分析表对于你来说应该是很熟悉了。Df列表明了模型里的自由度,它简单的反映了这个案例的参数估计。例如,自由度为4的模型m0表明了这个模型预测了4个参数(1.修正截距效应系数,2.时间效应,3.随机截距方差,4.残差)。
AIC和BIC是两个常用的拟合指数。AIC和BIC都考虑到两个因素:模型的数据拟合效果有多好,和这个模型复不复杂。AIC和BIC的不同之处在于模型复杂度的罚分上(BIC对模型复杂度的罚分影响更大)。我发现,AIC理解起来更容易,因为它渐进的使用留一交叉检验法(LOOCV)来预测运行效果。我们应当理解交叉检验和预测性能的概念,随后,如果你对此不太理解,你可以先把它跳过。
LogLik列模型参数的似然对数。从根本上说,它是模型里数据拟合效果的指标。其偏差是−2×logLik−2×logLik。为什么我们需要它?因为两个嵌套模型的偏差在原假设的条件下遵循卡方检验(假设两个嵌套模型的偏差一样)。此时,我们可以把它用作模型拟合差的测试。偏差的差则在Chisq列显示。卡方检验的统计相关自由度则在Chi Df(简单来说,就是额外参数的个数)。最后一行的结果显而易见:它算出了测试两个嵌套模型的差的p值。虽然是这样,我们还是要警惕ANOVA的结果,因为在众多的候选模型中,它会导致错误类型1上升极快。
由于模型m2比其它两个候选模型AIC和BIC都要好,而对于方差分析,我们可以认为这个模型是目前为止我们拟合的最好的了。当然,这个模型还有许多要改进的地方。后续,我们可能还可以在模型的性能上进行提升,并作图进行预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26