
企业该如何保护并创造数据价值
如今,人们越来越痴迷于数据,确保数据安全成为了企业必须承担的责任。确保数据安全的应用、海量存储、备份流程、培训等工作,占据了IT部门的大部分精力,导致他们几乎没有时间来梳理数据,评估需要通过什么方式备份什么内容。对于许多企业而言,默认的方法就是简单地备份所有数据。
然而,随着数据的来源不断增多,人们开始思考如何将数据保护的作用从确保业务正常运转转变为革新现有业务模式,以及如何提高数据保护的效率和效果。
信息是企业最重要的资产,但是保护这些信息却代价不菲,且流程十分复杂。我们注意到,企业每花费 1 美元保存客户信息,就必须花费至少4-6美元去保护它。对于企业和机构而言,数据保护是一种昂贵,但又不可或缺的保障,防止数据丢失可以有效避免品牌声誉受损或卷入诉讼纠纷。
过去五年中,科技进步催生了众多企业必备的解决方案,包括: 服务器 虚拟化 、物联网 、数据分析和 软件 定义数据中心;而每一种解决方案都带来了新的备份需求和挑战。最终,大多数企业至少拥有三种备份解决方案以满足数据保护需求。
企业并没有将更多预算用于IT部门,而数据处理和分析成本却水涨船高。因此,许多企业希望能够降低数据保护成本的同时优化数据保护流程。那么从哪里着手呢?建议可以考虑以下几点:
数据保护要创造价值
保护的成本应与信息的业务价值相称。在明确了哪些是关键数据、哪些是重要数据以及哪些是标准数据之后,企业便可按照业务需求来调整流程。
首先弄清为什么要保护数据?
在线恢复——数据损坏等影响有限的灾难
灾难恢复——洪水、火灾等大规模的灾难
长期保存——满足合规要求
我们先来了解一下各种不同的恢复类型和不同重要性级别的数据,如下图所示:
举例来说,当 银行 核心系统运行出现问题时,必须通过硬件快照实现在线恢复。虽然这种方法成本较高,但是它能够迅速恢复,从而保持业务的连续性,同时减少数据丢失,降低对用户造成的影响。所以,这种情况属于关键型需求。
而像患者数据这样的信息,虽然并不是经常使用,但必须在患者的有生之年甚至更长时间保存,那么我们可以按照管理部门的要求,通过上图右边的私有云或公共云保存,以降低成本。
企业只需要花点时间评估一下自己的数据属于上图中的哪一种情况,便可着手制定一款系统的,更经济的数据保护方案。
充分利用云
利用云保存备份数据看起来更有吸引力,但IT部门面临的挑战也相对较大。云可以最快速地降低成本,但它也最容易带来风险,从而影响安全性、灵活性和实际成本等。
加密可以降低企业的数据安全隐患,确保保管数据的“钥匙”始终掌握在企业手中。同时,企业要弄清云服务所需的成本,虽然这需要基于可预见的用户需求进行提前规划,但这可以保证企业在遇到额外收费或系统出现局限性时,不至于十分意外。
确保灵活性则更为困难。云提供商变动频繁,IT部门经常被迫采用新的系统,频繁迁移数据不仅复杂,还具备很大的风险,所以企业需要一个“云保镖”,当企业希望充分利用最新的云技术时,它能够帮助其顺利实现云之间的数据迁移,同时避免引发各种问题。
改造和整合流程
过去,客户被迫采用同类最佳的方法以便更好地支持新的业务需求。然而,其结果是复杂性大增——解决方案多种多样,维护和培训成本也急剧上升。如今,随着解决方案逐渐适应了技术发展趋势,企业可以采用单一解决方案,在同一地点支持多种应用。例如,全球最大的电信公司之一采用了HDS HPP和Veritas NetBackup联合解决方案,通过一个多租户系统,满足全球客户的各种数据保护需求。
自己创建还是购买定制化解决方案?
如今的企业必须足够灵活,才能够及时响应不断变化的客户需求。因此,IT部门不再仅仅被视为服务提供方,而是能够指导最佳实践,实现业务转型的有力支撑。
企业自己创建解决方案可实现全局管理,对于某些企业来说似乎是理想的选择。但是,这将使存储解决方案和应用的成本大幅上升,且需要专门的管理团队来运行。相反,通过购买基于需求的定制化解决方案,IT部门能够节省此前用于维护、升级和检修系统的时间,从而将精力投入在高附加值的工作中,比如为企业探索新的业务增长点,同时确保成本和维护的可预测性。
各行业客户的实际用例足以说明问题。某全球领先的饮料公司的数据年增长量高达30%,通过使用HDS解决方案,其数据保护需求降低了70%。此外,某跨国零售商将备份时间减少了50%,现在能够做到一夜之间备份好所有数据。
在可以预见的将来,数据仍将继续占据大部分IT流程,所以如何降低成本和提高流程效率是必须被纳入考量的问题。在数据保护方面,企业不再仅仅持“备份一切”的心态,而是能够极其灵活地控制成本,获取洞察,并最终通过保存的数据获取价值。在通过数据保护获取价值的竞争中,一款综合所有这些功能的解决方案可谓制胜关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07