
在零售行业大数据分析还处于刚刚起步的阶段
大数据技术近年来持续落地到各个行业,各种案例层出不穷。但在零售业,特别是线下传统零售行业,大数据分析还处于刚刚起步的阶段。
可是零售业销售环境却已变得错综复杂:
百货商场受到购物中心冲击,怎么重新定位?如何与电子商务结合?互联网兴起后,80-90后消费者购物习惯发生变化,如何更好地理解客户,针对性设计、营销产品,并与客户互动?
在消费者都已经利用大数据武装自己,提出更多个性化的需求的时候,传统零售业如何寻找这些答案?
要回答这个问题首先要考虑如何搭建企业内部的大数据分析平台。作为时尚领军品牌的星期六鞋业,相比竞争对手来说,已是先吃螃蟹的企业,在2015年6月就已经与IBM签署了合作,通过使用PCI解决方案,深挖数据背后的价值,实现销量增加至少0.5%的结果。
但罗马不是一天建成的,具体怎么做的?星期六股份有限公司副总经理刘海金在今年IBM大数据与分析主题周中分享了其搭建平台、布局O2O的策略。
1如何做最佳决策,制定O2O策略?
营销决策的核心是要知道“客户在哪”,从观察到洞察客户,看到一个清晰的360°客户画像。大数据洞察与分析平台的最大价值就体现在支持决策上。
那么,如何做到最佳决策?
分析传统零售业面临的困境,比如星期六鞋业经过二十多年发展,从过去简单批发为主的销售模式,到百货公司兴起后带来零售商之间的竞争;再到现在面临的购物中心和电子商务的冲击,现实的困境和挑战都让管理者感到迫在眉睫,如何在这种变革中以数据化的方式衡量利弊,做出最好的决策,很有必要。
这也是星期六鞋业较早地开始搭建大数据分析平台的原因。PCI不仅可以将星期六鞋业的品牌、业务系统和数据集进行整合及分析,还能把营销和产品设计团队植入了新的客户洞察能力,并且实现自动预测分析及结果生成。
刘海金介绍,经过数据分析有一些新发现:
百货商场业绩存在下滑趋势,而购物中心和电子商务呈现高速增长趋势,且未来还会有更大增长。但这并不意味着盲目和购物中心、电商合作,有了大数据分析与洞察平台,就可以根据用户综合分析来合理规划投入占比,“冷静地”处理与各个平台的关系。
比如通过热力图分析,发现网上购买的用户恰巧在实体店周边,说明是品牌影响力带动的线上销售。 这样就可以“把有限资源投入到有价值的领域去,进行有针对性的营销活动,并且100万的市场活动经费,投入出去可以直接看到推广效果,有助于评估。”
除此之外,刘海金认为,通过针对性营销活动和精准运营还远远不够。目前来说,以淘宝、京东为主的电商都在支持线下传统品牌,主要是因为其有实实在在的产品。而星期六鞋业也正事迎合了这种趋势,有针对性的设计产品,因此近期在电子商务销售增量上非常明显。
这就涉及产品组合和定价策略。根据大数据洞察能力,不是简单的把信息归纳在一起,而是可以实现多角度分析,来调整线上、线下价格,使之趋于一致。并根据具体销售情况,来做产品组合策略,迎合线上客户需求。
这也是正星期六鞋业在2015年6月与IBM签署合作后第一步要做的,即设定公司五年战略规划,未来将更注重产品类别多元化、制定O2O策略、拓宽更多销售渠道。
2选择平台很重要 模型成为企业资产
也许你会问,做大数据解决方案的那么多,为什么IBM能够吸引星期六鞋业?刘海金表示,主要是因为IBM“拿出了实实在在的O2O应用场景案例”。而这也是得益于IBM在这方面做得比较早,具有先发优势。
那么如何落地?
针对具体情况,星期六鞋业是全链条的,涉及产品设计、采购、生产、营销、服务、售后,背后的IT技术如何支撑?这就需要建设统一的客户分析平台。
可以说,作为传统零售企业,其各个层面的决策的都可以在平台上根据数据来洞察。正如刘海金所说,“时尚企业要把握时机,知道客户在哪里、匹配什么产品?”
并且,在这个平台上,各部门之间的数据是共享的。最直接的体现是在管理人和库存这两个最重要的资产上,可以充分调动。他认为,“过去的工作模式比较粗放,在搭建这个平台后,发现可以开展更多工作,延伸出更多的商业模式”。
最吸引企业的是,平台中的模型对于企业来讲也是一个资产,利用模型能够帮助客户快速的利用已有的资源来落地和实现决策功能。比如客户细分模型、客户价值分析模型、社交媒体监控及分析模型、产品组合推荐模型、客户流失模型、客户响应(促销/客户活动)模型、门店选择分析模型、消费者转化模型等等。
3合作探讨 落地快
据了解,星期六鞋业的大数据分析与洞察平台在短短4个月之内已初步搭建完成,通过PCI解决方案整合并模型化了来自客户、外部(天猫、京东、互联网等)及星期六股份有限公司内部数据。
之所以进展这么快,刘海金认为,是因为IBM不仅有大数据分析技术,同时对传统行业有对口专家指导。进一步说,双方合作方式是,先探讨发展问题,再落地大数据解决方案,加之IBM团队提供咨询服务,配合星期六技术团队一起来实施。
当然,星期六领导层的重视也是推动项目落地的重要原因,在制定O2O策略、搭建平台后,集团层面明确了下一步发展方向,至于如何进一步落地到基层,还需要企业内部的宣讲会、培训,从管理层、开发、客户服务、销售不同层面推动,最后可以让购物中心经理层直接拿到数据开展工作。
除此之外,市场策略还受时意见达人的影响,因此与IBM第三部分合作还涉及到外部数据源的集成,据此可以进行尚领袖、舆情监控,与客户更好地互动。就像刘海金的比喻,“如同给企业一双眼睛,看到市场发生的变化,以及未来几年的战略规划”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15