京公网安备 11010802034615号
经营许可证编号:京B2-20210330
法律大数据带来了什么
司法信息大公开,今天的法律数据日益呈几何倍数增长。法律大数据带来的变革能否带来数据质和量上的提升呢?
目前,对于“什么是法律大数据”,法律界并没有统一明确的说法。套用维克托关于大数据的认识,我们不妨将法律大数据理解为:以一种前所未有的方式,通过对海量法律数据进行分析,对法律问题进行预判,获得巨大价值的产品和服务,或得出新的认知、深刻的观点和主张。法律大数据可能改变法律服务市场及组织机构框架,甚至改变政府与公民的关系。
法律大数据的现状事实上,在没有形成大数据这个概念及实践前,法律数字化资源早已存在,以北大法宝、北大法意、中国知网法律数据库等法律电子数据为代表,基本构成了中国法律专业人士的主要法律信息检索工具。
法律数字化资源早已成型2014年1月1日《最高人民法院关于人民法院在互联网公布裁判文书的规定》施行,要求各级人民法院应当在裁判文书生效后七日内按照规定完成技术处理在中国裁判文书网公布。随着司法信息大公开,出现了无讼、openlaw、九章等民间资本运作的法律数据库。中国裁判文书网在民间数据库某种压力的倒逼之下,于去年华丽转身,改版后的网站以强大的高级检索功能迅速得到业界广泛赞誉,更重要的是其数据来源不仅权威,而且免费。2016年3月31日最高人民法院推出的“法信——中国法律应用数字网络服务平台”正式上线,业界称之为中国版的“Westlaw”。然而法律大数据的作用远不止于此。
它并不是一堆数字化资源法律大数据并不等同于传统的法律数字化资源。
首先,传统的法律数字化资源在量上应比法律大数据概念下的数据资源要小很多,法律大数据应该是指需要处理的数据量过大,已经超出了一般电脑在处理数据时所能使用的内存量,因此必须改进处理数据的工具,采用新的处理技术,使得人们可以处理的数据量大大增加。
其次,法律大数据并不能满足于传统法律数据库单纯的法律信息汇总分类整理,法律大数据最核心的功能应是预测,通过海量的法律数据分析,形成对特定法律问题的裁判预测,进行同案类推,甚至对案件时长、难度、证据要求、胜诉概率、赔偿数额、量刑长短进行预判,推进人工智能发展,实现计算机的自我学习与完善。
法律大数据带来了什么?首先,法律数据行业可能面临重新洗牌。不管是Westlaw还是LexisNexis,抑或是中国本土的北大法宝、法意,虽然其固有优势明显、基础雄厚,但在大数据的浪潮下,官方数据统一开放,却可能使各家数据公司站在同一起跑线上,谁的大数据挖掘能力强,就可能在新一轮的竞争中脱颖而出。同时,数据公司生存模式也可能成为新一轮的竞争焦点。
其次,法律实践效能递增。对律师行业而言,法律大数据有助于律师对案件进行科学合理的预判,甚至可以预估案件审理法官的裁判倾向,对案件赔偿数额、诉讼周期、法律适用等做出分析,甚至借助系统自动生成法律文本,从而显著地节约法律实践成本。对法院系统而言,很可能在不远的将来,马克斯·韦伯提到的“自动售货机”——只要输入案件证据材料,法院就会自动吐出相应判决——将成为法院的真实写照,机器通过海量数据对比,筛选同类案件,给出参考判决意见,促进类案同判和量刑规范化。
再次,法学研究范式转变。南京邮电大学信息产业发展战略研究院院长王春晖表示:“法律大数据很有可能是一场法律研究范式的革命。”
大数据的到来,可能加剧两种法学研究路径的分化,一种继续保持传统的法学教义分析方法,另一种实证研究路径可能加快转向大数据全样本的分析范式,而谁掌握大数据资源、大数据分析工具,则能快速占领实证法学研究的高地。
大数据的引入还可能改变传统法学研究单兵作战的模式,集团化或团队协作可能在不远的将来成为实证法学研究新模式,而资本可能进一步渗透这种法学研究模式,成为幕后组织运作的智库推动力。可以预计,各种民间的专业化大数据研究机构将不断兴起,法律数据分析师、知识管理师将部分取代传统专家型地位,法学研究价值将不断提升,甚至成为专业服务传统律所、政府购买服务对象的第三方机构。
法律大数据来势汹涌,但面临的瓶颈也是显而易见的。长期从事信息公开研究的上海政法学院肖卫兵教授表示:法律大数据的实现离不开数据的可得性,政府的工作重点仍应该放在信息开放维度上。政府在明确数据发布来源之后,应同时确保数据来源真实完整,并鼓励民间竞争,充分挖掘数据深度价值,提升数据附加值,使得公众可以轻松便捷地获取、分享和受益于公开透明的政府、行业及司法数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22