
得大数据者得新工业革命先机
数据无限多时,就接近真实世界的本原。人类征服世界的前提是认识世界,既然借助大数据已经无限接近了真实世界,也就不必画蛇添足了,还是保持真实数据原貌最好,而且,认识世界的能力越强,人类征服世界和改造世界的能力也越强。
世界经济论坛第十届新领军者年会即夏季达沃斯论坛即将在天津举行,主题为“第四次工业革命——转型的力量”。届时,全球90多个国家和地区的超过1500位各界领军人物将集中探讨第四次工业革命对未来经济、社会、生态和文化的重要影响。今年1月下旬在瑞士小镇举行的达沃斯年会,主题也是“掌控第四次工业革命”,主要讨论第四次工业革命将如何改变人类生产、分配和消费模式,如何应对由此带来的挑战。世界顶级企业家与智库一年内两度探讨同一主题,在达沃斯论坛历史上还是首次。世界精英如此心仪新工业革命,盖因世界经济遇到了瓶颈,人们急切期望从新工业革命中找到突破口,找到人类可持续发展的钥匙。而要理解新工业革命,先得弄清大数据革命。
一般认为,大数据的数量级是在“太字节”即2的40次方以上,一般软件人员难以收集、存储、管理和分析的数据,而且这种认定还是相对的,随着科技进步,“大”的认定还会不断变化。但仅仅因为“大”而称之为大数据,风靡全球的大数据革命就没有太大意义了。在小数据时代,我们只能有选择性采集抽样数据、局部数据和片面数据,有时甚至在无法获得实证时纯粹靠经验、理论、假设和价值观去发现未知领域的规律。结果只能是对真实世界的抽象归纳与推理,这就不可避免包含了人的心理和主观因素。同时,由于样本的局部性,时间非全天候性,归纳推理中的主客观偏差,有时可能出现“蝴蝶效应”,差之毫厘,谬以千里。
大数据的真正意义在于:通过传感器,实现真实世界的全方位连接,得到全方位实时数据,交换、整合和云计算,逼近真实世界。
小数据追求“小”、“精”、“优”;大数据追求的是“多”、“杂”、“更优”。小数据时代,受科技水平的限制,只能依据随机样本,大数据则要求所有数据,在小数据时代只有5%的数据符合样本结构化要求,剩下的95%数据都被排斥在外了。大数据则良莠不拒,不求随机样本,而是全体数据;不求精确性,而是混杂性。小数据探求因果关系,即知道“为什么”,以便归纳推理和预测;而大数据只知道相关关系,不必知道因果关系,只要知道“是什么”不必知道“为什么”。小数据追求精确、完美,往往导致不精确、不完美;大数据不求精确、不求完美,反而导致了观测客观世界的更精确、更完美。如2009年谷歌通过大数据分析准确地得出什么地方发现了H1N1禽流感,而且判断非常及时,比美国疾控中心的判断结论要早一两周。美国安大略理工学院卡罗琳·麦格雷戈博士利用软件预测早产儿的病情,不仅比专业医生及时,而且一些病状,医生不能发现,而计算机能发现。这些人都没有医疗方面的专业背景。这样的例子在大数据时代还有很多。正如“大数据时代的预言家”,牛津大学教授维多克·迈尔-舍恩伯格所言:“在不久的将来,世界许多依靠人类判断力的领域都会被计算机系统所改变甚至取代。”这看似是一个矛盾的命题,其实是一个方法论上的革命,即“大数据革命”。
明代著名思想家洪应明说过:“文章极处无奇巧,人品极处只本然。”一个人写文章写到登峰造极的境界时,其实并没有什么写作艺术可言,只是把内心的真实感受真实地表现出来,让读者从内心产生共鸣。一个人的品德修养达到炉火纯青的境界时,就能“随心所欲不逾矩”,让人回归到纯真朴实的本然之性而已。大数据革命与此异曲同工:“工业革命无奇巧,数据大时只本然”。数据无限多时,就接近真实世界的本原。人类征服世界的前提是认识世界,既然借助大数据已经无限接近了真实世界,也就不必画蛇添足了,还是保持真实数据原貌最好,而且,认识世界的能力越强,人类征服世界和改造世界的能力也越强。
大数据“多”、“快”“好”“省”的优点奠定了新工业革命的基石。“数据多”,随着科技水平的进一步发展,大数据将无限逼近真实世界。“速度快”,全天候随时实现信息交换,没有时滞。“效果好”,大数据增加了人类的“观测”能力。美国麻省理工学院布伦乔尔森将大数据称之为人类社会行为观测的“显微镜”,就像望远镜让我们能洞察遥远的星河,显微镜让我们观察微小的细胞一样,大数据将帮助我们完成在通常的眼光下无法完成的工作。
新工业革命,本质上是智能革命,而智能革命的基础是信息化,大数据是根本。没有大数据对客观事物全面、快速、真实、准确的信息反馈,任何智能设备都不可能实现真正的智能。因此,西方学者将即将来临的新工业革命也称之“后信息时代的革命”,归根到底,这是“大数据的革命”。以至于知名信息专家涂子沛说:“数据可以治国,也可以强国”,“得数据者得天下”。借用涂子沛的这句话,我们还可以说:“数据可以治业,数据可以兴业,得大数据者将占据新工业革命之先机!”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18