京公网安备 11010802034615号
经营许可证编号:京B2-20210330
抓住大数据时代机遇 用数据更好地服务于税收工作
随着“互联网+税务”时代的来临,税收数据的应用成为税收管理变革与创新的关键,作为基层国税部门,应抢抓大数据时代机遇,坚持用数据说话、用数据改进管理、用数据更好地服务于税收工作,使纳税人拥有满满的获得感。
一、大数据对国税工作的影响
大数据主要是数字化的可以利用的各方面海量信息。多年来,国税部门面对大数据的发展,进行了积极应对和探索。
(一)促使税收工作转型。
大数据伴随着信息化,推动征管方式不断变革,大致经历了三个阶段:上世纪90年代后期,山西省国税局独立开发一套税务征管信息系统,数据存储在各基层彼此互不关联,仅仅方便查询统计;2000年,各地搭建专用的广域网络,实现了省市县局数据局部共享,利用率有所提高;2013年,随着“金税三期”工程推广,建立了全国统一的税务信息系统,涉税信息涵盖国地税各税种,申报征收、企业财务、发票信息通过申报采集平台汇集到国税总局的数据库中,实现全国税务系统内互联互通,国税部门由此迈入大数据时代。
(二)纳税评估应用而生。
为防范税收风险,从省局到基层成立了专业数据分析机构,充分挖掘数据资源服务于税收工作。通过税收与经济运行中的宏观微观数据,开展关键指标比对,进行税收风险、政策效应、经济运行分析,发现税收征管中存在的风险点,准确提出加强组织收入的措施,同时折射经济社会发展中值得关注的问题,为各级党委政府宏观决策提供意见和建议。比如,太原高新国税为适应大数据时代工作特点,根据国税总局税收专业化要求,成立了风控中心和三个专业的纳税评估科,通过数据分析,进行实地评估调查取证,防范税收风险,保证国家税收,提高纳税人对税法的遵从度。
二、盘活数据资源,更好地服务于基层国税工作
(一)拓宽数据采集能力,提高数据准确率。一是大力推广网上办税平台。纳税人财务系统和税务征管系统对接是提高数据采集质量的主要方法,推行网上申报是大趋势,可以使纳税人申报和国税部门采集的数据完全一致。二是把好数据入口关。涉税大数据主要来源于一线人员的采集,工作的细致程度直接关系涉税大数据的质量,要尽量减少因工作失误导致的数据失真,进而影响数据分析评估效果。三是调查数据严把关。经过数据分析得出的涉税疑点,应认真核实查证,对证据确凿的要补税、加滞、处罚,并及时反馈结果;对确实没有问题的撤案上报,帮助上级修正数据分析模型,促进分析质量不断改进。
(二)强化数据上下合力,促进分析科学性。一是上级部门为基层工作提供明确标的。上级部门通过掌握的第一手数据资源,进行数据科学分析,深度挖掘数据信息,对被评估企业行业经营状况、财务数据等进行分析,如:以数据为基础构建重点行业的评估模型,针对每个行业的特点,调整模型中参数的权重,使分析的疑点更加准确可靠,推动基层工作有的放矢。二是发挥基层人员数据分析能动性。首先,基层对所管企业的经营特点比较了解;其次,有些企业偷税但各项分析指标表现却很好,仅仅靠数据分析模型,就可能漏掉很多问题企业,相较而言,一线人员有其自身优势,对发生的涉税问题更敏感,应有效发挥其能动性,促使数据分析更完整。
(三)挖掘数据风控效力,提升税法遵从度。一是运用大数据防控风险。通过数据网络平台,发挥好“数据透视镜”的作用,比如被评估企业行业经营状况、业务单位发票信息等申报汇总数据进行分析比对,就能对所辖企业进行深度挖掘。2015年以来,太原高新国税通过电子邮件、短信等方式向300余户次纳税人推送风险提醒服务18项,引导纳税人根据提醒的涉税风险疑点进行自查补税100余万元。二是运用大数据做到应收尽收。结合大数据,加强纳税评估,挖掘税收潜力,最大限度地堵漏增收,不断提高征管质量与效益。2013年以来,太原高新国税局以“金税三期”工程和电子底账系统为依托,在申报期结束后,根据当月申报数据迅速运用电子化决策包和电子底账系统自动核对申报数据和发票流向,对税负明显异常、抵扣明显异常、进销明显不符等12项高风险点重点分析,三年来,累计评估入库税款12736万元,为服务经济大局做出了贡献。
(四)释放数据扫描威力,找准服务着力点。一是运用大数据提供优质服务。充分释放纳税人数据的效应,找出各项业务办理的共性规律,用涉税数据为纳税人“扫描体检”。太原高新区国税局针对国家陆续出台的小微企业税收优惠政策,通过数据采集、数据比对逐户筛选发现应享未享政策优惠企业,通过微信、短信平台等温馨提示方式对纳税人再提醒。2016年共对5户小微企业补充更正,享受减免税额3万元。二是运用大数据持续改进办税服务。纳税人在办税过程中积累了海量的数据,蕴含着他们的办税习惯和行为特征,把这些数据分析好、应用好,就能找到改进服务的‘金钥匙’。比如,根据纳税人领用发票在周二比较密集的时间习惯,太原高新国税局要求办税服务厅当天扩大发票窗口比例;针对新办小型企业申报办税不及时比例较高的问题,在首次申报前跟踪提醒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20