
抓住大数据时代机遇 用数据更好地服务于税收工作
随着“互联网+税务”时代的来临,税收数据的应用成为税收管理变革与创新的关键,作为基层国税部门,应抢抓大数据时代机遇,坚持用数据说话、用数据改进管理、用数据更好地服务于税收工作,使纳税人拥有满满的获得感。
一、大数据对国税工作的影响
大数据主要是数字化的可以利用的各方面海量信息。多年来,国税部门面对大数据的发展,进行了积极应对和探索。
(一)促使税收工作转型。
大数据伴随着信息化,推动征管方式不断变革,大致经历了三个阶段:上世纪90年代后期,山西省国税局独立开发一套税务征管信息系统,数据存储在各基层彼此互不关联,仅仅方便查询统计;2000年,各地搭建专用的广域网络,实现了省市县局数据局部共享,利用率有所提高;2013年,随着“金税三期”工程推广,建立了全国统一的税务信息系统,涉税信息涵盖国地税各税种,申报征收、企业财务、发票信息通过申报采集平台汇集到国税总局的数据库中,实现全国税务系统内互联互通,国税部门由此迈入大数据时代。
(二)纳税评估应用而生。
为防范税收风险,从省局到基层成立了专业数据分析机构,充分挖掘数据资源服务于税收工作。通过税收与经济运行中的宏观微观数据,开展关键指标比对,进行税收风险、政策效应、经济运行分析,发现税收征管中存在的风险点,准确提出加强组织收入的措施,同时折射经济社会发展中值得关注的问题,为各级党委政府宏观决策提供意见和建议。比如,太原高新国税为适应大数据时代工作特点,根据国税总局税收专业化要求,成立了风控中心和三个专业的纳税评估科,通过数据分析,进行实地评估调查取证,防范税收风险,保证国家税收,提高纳税人对税法的遵从度。
二、盘活数据资源,更好地服务于基层国税工作
(一)拓宽数据采集能力,提高数据准确率。一是大力推广网上办税平台。纳税人财务系统和税务征管系统对接是提高数据采集质量的主要方法,推行网上申报是大趋势,可以使纳税人申报和国税部门采集的数据完全一致。二是把好数据入口关。涉税大数据主要来源于一线人员的采集,工作的细致程度直接关系涉税大数据的质量,要尽量减少因工作失误导致的数据失真,进而影响数据分析评估效果。三是调查数据严把关。经过数据分析得出的涉税疑点,应认真核实查证,对证据确凿的要补税、加滞、处罚,并及时反馈结果;对确实没有问题的撤案上报,帮助上级修正数据分析模型,促进分析质量不断改进。
(二)强化数据上下合力,促进分析科学性。一是上级部门为基层工作提供明确标的。上级部门通过掌握的第一手数据资源,进行数据科学分析,深度挖掘数据信息,对被评估企业行业经营状况、财务数据等进行分析,如:以数据为基础构建重点行业的评估模型,针对每个行业的特点,调整模型中参数的权重,使分析的疑点更加准确可靠,推动基层工作有的放矢。二是发挥基层人员数据分析能动性。首先,基层对所管企业的经营特点比较了解;其次,有些企业偷税但各项分析指标表现却很好,仅仅靠数据分析模型,就可能漏掉很多问题企业,相较而言,一线人员有其自身优势,对发生的涉税问题更敏感,应有效发挥其能动性,促使数据分析更完整。
(三)挖掘数据风控效力,提升税法遵从度。一是运用大数据防控风险。通过数据网络平台,发挥好“数据透视镜”的作用,比如被评估企业行业经营状况、业务单位发票信息等申报汇总数据进行分析比对,就能对所辖企业进行深度挖掘。2015年以来,太原高新国税通过电子邮件、短信等方式向300余户次纳税人推送风险提醒服务18项,引导纳税人根据提醒的涉税风险疑点进行自查补税100余万元。二是运用大数据做到应收尽收。结合大数据,加强纳税评估,挖掘税收潜力,最大限度地堵漏增收,不断提高征管质量与效益。2013年以来,太原高新国税局以“金税三期”工程和电子底账系统为依托,在申报期结束后,根据当月申报数据迅速运用电子化决策包和电子底账系统自动核对申报数据和发票流向,对税负明显异常、抵扣明显异常、进销明显不符等12项高风险点重点分析,三年来,累计评估入库税款12736万元,为服务经济大局做出了贡献。
(四)释放数据扫描威力,找准服务着力点。一是运用大数据提供优质服务。充分释放纳税人数据的效应,找出各项业务办理的共性规律,用涉税数据为纳税人“扫描体检”。太原高新区国税局针对国家陆续出台的小微企业税收优惠政策,通过数据采集、数据比对逐户筛选发现应享未享政策优惠企业,通过微信、短信平台等温馨提示方式对纳税人再提醒。2016年共对5户小微企业补充更正,享受减免税额3万元。二是运用大数据持续改进办税服务。纳税人在办税过程中积累了海量的数据,蕴含着他们的办税习惯和行为特征,把这些数据分析好、应用好,就能找到改进服务的‘金钥匙’。比如,根据纳税人领用发票在周二比较密集的时间习惯,太原高新国税局要求办税服务厅当天扩大发票窗口比例;针对新办小型企业申报办税不及时比例较高的问题,在首次申报前跟踪提醒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01