京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不要简单地说大数据可以预测未来
在简练表达“何为城市理想”之后,茅明睿马上向听众直言了城市规划师所直面的“理想与现实”之间的残酷距离。他说,作为一个在规划圈待了十余年的人,这当中体会最深的两对矛盾就是,“理想与谋生需求的冲突,个体认知与上位要求的冲突”。
虽然规划师们始终在尝试运用先进的技术工具和手段,助力规划信息化水平,对接城市居民的切实需求,但是也会经常被人吐槽。尤其是一些技术手段,往往沦为华而不实的一个PPT作为锦上添花的配图工具。
除此以外,茅明睿坦言,虽然城市规划师看似就像握着画笔的画家,基于科学论证挥洒着他们的想象力。但现实中,即便他们也是上要照顾领导,下要养家糊口。一名城市规划师的真实处境,其实是在民众与公权力的夹缝中求生存。
寻求城市理想要接地气,更要转型创新
茅明睿认为,人口红利的逐渐消失,让城市规划逐渐变成一个解决存量问题的工作。另一方面,互联网技术的发展,也在推动规划行业转型创新。比如城市规划领域,有了自己的组织群体,例如BCL、青年规划师联盟、NGO,以及各种在微信上建立的规划群等等。不仅如此,规划行业也在深处变革,比如从以往的垄断数据到现在的开放数据、从以往的IT到现在的DT、从权力到权利的转变……这些都格外引入注目。
而关键的问题也来了:城市规划,到底如何接地气地跟上如今社会转型的需求?茅明睿给出的答案是,规划业务要转型、规划院管理要转型,规划师更要积极自我转型。
他提到,规划院要积极建立云平台,集合数据和规划师组织,做好大数据的获取挖掘与城市研究、汇集集体智慧,同时,在自下而上的社区治理和规划实践中,广泛收集社会意见和建议,形成城市规划的决策动力。
谈及规划师的自我转型,茅明睿表示既要下得去社区,更要玩得转数据。如果现在的规划师还无法运用大数据来辅助甚至引领城市规划,接下来面临的处境很可能是淘汰出局。
城市规划 只聚焦交通大数据你就错了
城市交通与城市规划的关系是密不可分的。不过在茅明睿看来,提到城市规划的时候,公众甚至很多规划师也会首先想到城市交通。但,一个好的城市规划师不只是关注交通,或者是眼下提得更多的交通大数据。
茅明睿表示,在交通大数据上单一地发力,很难在实质上推动城市规划形成好的解决方案。更多时候,交通大数据能提供的基本是一个道路拥堵与否的参考。他认为,真正的城市规划解决方案还需要依托多个城市生活维度的综合考量,深层次定夺方案。
数据的来源应该更多,更广泛。关注的维度应该更多,更立体。
提到大数据,茅明睿认为“感知即参与”,他以北规院举办的“长辛店老镇复兴计划”、积水地图为例,解释了云平台如何利用线上线下的服务实现数据众筹。真正让城市规划云平台充当好完善城市规划与便捷百姓生活的优质角色。
“不要简单地说大数据可以预测未来!”
“未来的城市规划,一定少不了大数据。”这一观点贯穿在茅明睿的整场演讲中。然而,大数据到底如何看待,到底怎么用?茅明睿表示,“不要简单地说,大数据可以预测未来!”
茅明睿表示,北规院在大数据方面也做了很多的研究。在现场,他结合了“利用公共交通刷卡数据分析北京通勤出行情况”、地铁里的灰色人群等丰富案例来解释大数据的相关实际应用。
除此之外,他以顺义、通州为例,展示了“人迹地图”这一城市数据平台功能在人流分析、人群分析、单元画像、城市光谱等方面的案例。
总结时,茅明睿在一再强调,一定不能简单认为大数据拿来了就能预测,要基于原有统计做深植,要通过数据观察现象、提取信息、发现具体规律,这样才能看出城市规划中,具体的公共决策会对这个城市的人群造成什么样的影响。路很漫长,要做的事情还有很多,希望在未来,以数据感知分析为桥梁,“下社区”去实现真正的城市理想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26