京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不要简单地说大数据可以预测未来
在简练表达“何为城市理想”之后,茅明睿马上向听众直言了城市规划师所直面的“理想与现实”之间的残酷距离。他说,作为一个在规划圈待了十余年的人,这当中体会最深的两对矛盾就是,“理想与谋生需求的冲突,个体认知与上位要求的冲突”。
虽然规划师们始终在尝试运用先进的技术工具和手段,助力规划信息化水平,对接城市居民的切实需求,但是也会经常被人吐槽。尤其是一些技术手段,往往沦为华而不实的一个PPT作为锦上添花的配图工具。
除此以外,茅明睿坦言,虽然城市规划师看似就像握着画笔的画家,基于科学论证挥洒着他们的想象力。但现实中,即便他们也是上要照顾领导,下要养家糊口。一名城市规划师的真实处境,其实是在民众与公权力的夹缝中求生存。
寻求城市理想要接地气,更要转型创新
茅明睿认为,人口红利的逐渐消失,让城市规划逐渐变成一个解决存量问题的工作。另一方面,互联网技术的发展,也在推动规划行业转型创新。比如城市规划领域,有了自己的组织群体,例如BCL、青年规划师联盟、NGO,以及各种在微信上建立的规划群等等。不仅如此,规划行业也在深处变革,比如从以往的垄断数据到现在的开放数据、从以往的IT到现在的DT、从权力到权利的转变……这些都格外引入注目。
而关键的问题也来了:城市规划,到底如何接地气地跟上如今社会转型的需求?茅明睿给出的答案是,规划业务要转型、规划院管理要转型,规划师更要积极自我转型。
他提到,规划院要积极建立云平台,集合数据和规划师组织,做好大数据的获取挖掘与城市研究、汇集集体智慧,同时,在自下而上的社区治理和规划实践中,广泛收集社会意见和建议,形成城市规划的决策动力。
谈及规划师的自我转型,茅明睿表示既要下得去社区,更要玩得转数据。如果现在的规划师还无法运用大数据来辅助甚至引领城市规划,接下来面临的处境很可能是淘汰出局。
城市规划 只聚焦交通大数据你就错了
城市交通与城市规划的关系是密不可分的。不过在茅明睿看来,提到城市规划的时候,公众甚至很多规划师也会首先想到城市交通。但,一个好的城市规划师不只是关注交通,或者是眼下提得更多的交通大数据。
茅明睿表示,在交通大数据上单一地发力,很难在实质上推动城市规划形成好的解决方案。更多时候,交通大数据能提供的基本是一个道路拥堵与否的参考。他认为,真正的城市规划解决方案还需要依托多个城市生活维度的综合考量,深层次定夺方案。
数据的来源应该更多,更广泛。关注的维度应该更多,更立体。
提到大数据,茅明睿认为“感知即参与”,他以北规院举办的“长辛店老镇复兴计划”、积水地图为例,解释了云平台如何利用线上线下的服务实现数据众筹。真正让城市规划云平台充当好完善城市规划与便捷百姓生活的优质角色。
“不要简单地说大数据可以预测未来!”
“未来的城市规划,一定少不了大数据。”这一观点贯穿在茅明睿的整场演讲中。然而,大数据到底如何看待,到底怎么用?茅明睿表示,“不要简单地说,大数据可以预测未来!”
茅明睿表示,北规院在大数据方面也做了很多的研究。在现场,他结合了“利用公共交通刷卡数据分析北京通勤出行情况”、地铁里的灰色人群等丰富案例来解释大数据的相关实际应用。
除此之外,他以顺义、通州为例,展示了“人迹地图”这一城市数据平台功能在人流分析、人群分析、单元画像、城市光谱等方面的案例。
总结时,茅明睿在一再强调,一定不能简单认为大数据拿来了就能预测,要基于原有统计做深植,要通过数据观察现象、提取信息、发现具体规律,这样才能看出城市规划中,具体的公共决策会对这个城市的人群造成什么样的影响。路很漫长,要做的事情还有很多,希望在未来,以数据感知分析为桥梁,“下社区”去实现真正的城市理想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08