
2016年大屏生态运营大数据蓝皮书
大屏蓝皮书大数据显示,作为家庭互联网设备的核心,2015年OTT终端(包括智能电视及盒子)保有量达到1.65亿台。预计到2020年,OTT终端保有量将突破4亿台,超七成的中国家庭使用OTT端收看节目。
规模创造流量,流量成就价值。2013年,中国移动智能终端覆盖率为43%,促成移动互联网市场爆发。大屏蓝皮书预测的OTT端市场发展曲线,与移动互联网市场曲线有着惊人的相似。四年之后的2017年,OTT端家庭覆盖率预计将达到45%,非常有希望接过移动互联网这一棒,创造新一轮互联网神话。预计至2020年,OTT端市场规模将达到6300亿元,万亿市场蛋糕并不遥远,让我们拭目以待。
—内容为王,引大屏洪荒之力
相较于PC/移动端使用场景的碎片化,目前OTT端聚焦家庭互动场景。在重拾美好、回归家庭的社会趋势下,互动、开放的大屏平台帮助家庭留住人们的身影,成为开启全新家庭生活的一把金钥匙。
任何平台,离开内容,都是空中楼阁,所以说大屏把用户吸引回来的核心优势,也是内容。OTT端具有海量优质资源和独特资源,其中2016年上半年TOP30优质资源OTT端覆盖率已经高达87%。一方面把互联网人群吸引到电视机前,另一方面,电视机前的传统用户有了更多选择机会。海量、新鲜和独特资源的快速上线,让观众体验到与观看传统电视完全不一样的畅快感。
—亿量用户,星星之火开始燎原
从尝试到接受,OTT端发展经历了漫长的过程。在创新体验和丰富优质内容的双重吸引下,电视受众正在从传统电视向OTT终端转移。
大屏蓝皮书数据显示,2016年6月OTT月活跃终端覆盖用户2.36亿,日活跃终端覆盖用户1.53亿。目前移动互联网市场规模6000多亿元,移动网民6.2亿,人均贡献约1000元/年。按此推算,OTT端的市场规模将达2300亿,但实际远未达到。可以说,OTT市场是一个尚待开发的高价值蓝海市场。
过去半年,OTT点播行为变得越来越活跃,已经显著超越传统直播收视行为,完全实现逆转。从具体月份看,应该有一定节日规律,如春节期间,大家更多还是关注直播行为,平常月份点播行为更突出。
大屏蓝皮书数据显示,互联网电视单一终端日均开机时长达到5.04小时,高于传统电视终端开机时长的4.18小时(CMS统计数据)。这说明,互联网电视观看时间更长,受众粘性更高。一部分原本在PC和移动端的行为回归客厅,转移到互联网电视大屏上来。
同时,在互联网电视终端,用户收看时长的配比向互联网点播行为倾斜。数据显示,单一终端点播行为花费时长2.77小时,比传统直播行为时长高出0.5小时。互联网点播行为抢占了用户在电视终端的时间,形成了用户时间争抢拉锯战。
让我们来看一组传统电视直播频道与点播应用的具体表现对比。OTT端的三大视频应用日活终端覆盖达到1765万台,与传统电视直播频道相比看似旗鼓相当,但单一频道或应用的日均收看时长方面却差之千里。TOP3视频应用在单一OTT端点播日均3.2小时,远高于三大传统直播电视频道的1.2小时。这恰恰说明,传统直播电视频道因频繁换台,导致停留时间短,而OTT点播端则具有更强的用户粘性和吸粉持久力。
—面向未来,创大屏营销新价值
2015年,传统电视仅广告市场规模就超过千亿元,而OTT端市场规模尚不及其二十分之一。同为电视大屏,其市场营销价值差距竟如此之大,值得深入思考。增强OTT端的影响力,扩大对品牌的营销价值,成为行业共同的目标和责任。
OTT互联网市场已经初具流量基础,并随终端规模扩大而不断增强。OTT端的“传统直播+网络点播”双重特性,不仅增强了电视受众的使用体验,更能实时获取用户画像特征和使用偏好。所以,OTT端的营销方式不再只是卖流量,卖广告,更能够精准定位特定受众群体,将产品和服务与受众喜好的内容相结合,直接引导营销并产生销售成果。OTT端将演变成一个巨大的内容和产品服务平台,成为品牌与家庭沟通并提供商业服务的重要桥梁。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18