
2016年大屏生态运营大数据蓝皮书
大屏蓝皮书大数据显示,作为家庭互联网设备的核心,2015年OTT终端(包括智能电视及盒子)保有量达到1.65亿台。预计到2020年,OTT终端保有量将突破4亿台,超七成的中国家庭使用OTT端收看节目。
规模创造流量,流量成就价值。2013年,中国移动智能终端覆盖率为43%,促成移动互联网市场爆发。大屏蓝皮书预测的OTT端市场发展曲线,与移动互联网市场曲线有着惊人的相似。四年之后的2017年,OTT端家庭覆盖率预计将达到45%,非常有希望接过移动互联网这一棒,创造新一轮互联网神话。预计至2020年,OTT端市场规模将达到6300亿元,万亿市场蛋糕并不遥远,让我们拭目以待。
—内容为王,引大屏洪荒之力
相较于PC/移动端使用场景的碎片化,目前OTT端聚焦家庭互动场景。在重拾美好、回归家庭的社会趋势下,互动、开放的大屏平台帮助家庭留住人们的身影,成为开启全新家庭生活的一把金钥匙。
任何平台,离开内容,都是空中楼阁,所以说大屏把用户吸引回来的核心优势,也是内容。OTT端具有海量优质资源和独特资源,其中2016年上半年TOP30优质资源OTT端覆盖率已经高达87%。一方面把互联网人群吸引到电视机前,另一方面,电视机前的传统用户有了更多选择机会。海量、新鲜和独特资源的快速上线,让观众体验到与观看传统电视完全不一样的畅快感。
—亿量用户,星星之火开始燎原
从尝试到接受,OTT端发展经历了漫长的过程。在创新体验和丰富优质内容的双重吸引下,电视受众正在从传统电视向OTT终端转移。
大屏蓝皮书数据显示,2016年6月OTT月活跃终端覆盖用户2.36亿,日活跃终端覆盖用户1.53亿。目前移动互联网市场规模6000多亿元,移动网民6.2亿,人均贡献约1000元/年。按此推算,OTT端的市场规模将达2300亿,但实际远未达到。可以说,OTT市场是一个尚待开发的高价值蓝海市场。
过去半年,OTT点播行为变得越来越活跃,已经显著超越传统直播收视行为,完全实现逆转。从具体月份看,应该有一定节日规律,如春节期间,大家更多还是关注直播行为,平常月份点播行为更突出。
大屏蓝皮书数据显示,互联网电视单一终端日均开机时长达到5.04小时,高于传统电视终端开机时长的4.18小时(CMS统计数据)。这说明,互联网电视观看时间更长,受众粘性更高。一部分原本在PC和移动端的行为回归客厅,转移到互联网电视大屏上来。
同时,在互联网电视终端,用户收看时长的配比向互联网点播行为倾斜。数据显示,单一终端点播行为花费时长2.77小时,比传统直播行为时长高出0.5小时。互联网点播行为抢占了用户在电视终端的时间,形成了用户时间争抢拉锯战。
让我们来看一组传统电视直播频道与点播应用的具体表现对比。OTT端的三大视频应用日活终端覆盖达到1765万台,与传统电视直播频道相比看似旗鼓相当,但单一频道或应用的日均收看时长方面却差之千里。TOP3视频应用在单一OTT端点播日均3.2小时,远高于三大传统直播电视频道的1.2小时。这恰恰说明,传统直播电视频道因频繁换台,导致停留时间短,而OTT点播端则具有更强的用户粘性和吸粉持久力。
—面向未来,创大屏营销新价值
2015年,传统电视仅广告市场规模就超过千亿元,而OTT端市场规模尚不及其二十分之一。同为电视大屏,其市场营销价值差距竟如此之大,值得深入思考。增强OTT端的影响力,扩大对品牌的营销价值,成为行业共同的目标和责任。
OTT互联网市场已经初具流量基础,并随终端规模扩大而不断增强。OTT端的“传统直播+网络点播”双重特性,不仅增强了电视受众的使用体验,更能实时获取用户画像特征和使用偏好。所以,OTT端的营销方式不再只是卖流量,卖广告,更能够精准定位特定受众群体,将产品和服务与受众喜好的内容相结合,直接引导营销并产生销售成果。OTT端将演变成一个巨大的内容和产品服务平台,成为品牌与家庭沟通并提供商业服务的重要桥梁。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25