
制造企业利用大数据分析应对极具挑战的商业环境
一项针对200位高管开展的调查显示,大多数制造企业有计划明年增加数据分析方面的投资,即使需要推迟其他技术投资
霍尼韦尔成熟的自动化技术和服务能够助力制造业向工业物联网演变
美国得克萨斯州休斯敦2016年9月19日电 /美通社/ -- 霍尼韦尔 ( 纽约证券交易所代码: HON )过程控制部近期联合KRC Research研究机构开展的一项针对制造企业高管的调查显示,大多数受访者(67%)都在积极推进数据分析方面的投资计划以应对极具挑战的商业环境,即便削减其它领域的投资也势在必行。
当被问及原因时,很多受访者表示数据分析是工业物联网(IIoT)的关键组成部分,它能够有效解决导致停机和利损的一系列问题。
霍尼韦尔过程控制部数字化转型业务副总裁兼总经理安德鲁·赫德(Andrew Hird)表示:“企业高管们需要确保公司业务平稳且安全地运营。即便现金紧张,他们也希望能够利用工业物联网技术应对业务挑战。四十多年来,霍尼韦尔为帮助制造商实现这些目标提供了领先的自动化技术。 霍尼韦尔工业物联网 解决方案正是实现这场业务演变的下一步举措。”
来自北美制造业的200多位高管于2016年5月23日至6月8日参与了这项名为“数据对制造业的巨大影响:高管意见研究”的调查。其它主要发现包括:
一些公司表示不得不在意外停机和设备故障的威胁下继续运营,而这些因素是扩大收益的最大障碍。
大多数公司表示它们正在对数据分析技术进行投资。
25%以上的受访者表示明年不打算对数据分析进行投资。原因主要是对数据分析所带来的好处不了解以及资源不足。
艰难的停机周期
意外停机是收益最大化的头号威胁,不过42%的受访者承认在经营过程中有过让设备保持超负荷运行状态的操作。当被问及近年来出现一系列问题的频率时,71%的受访者表示至少偶尔会出现设备故障,64%的受访者表示出现过类似频率的意外停机。
赫德表示:“工厂设备超负荷运行会带来设备故障、潜在安全事故等一系列问题。这些问题不可避免地会导致更多的停机时间,从而造成收益损失。很显然,很多公司都陷入了这种恶性循环之中。霍尼韦尔高效的工业物联网解决方案所提供的预测性分析能够帮助公司走出这种恶性循环。”
40%的受访者认为意外停机是收益最大化的头号威胁。其他威胁因素包括:
供应链管理问题(39%)
人员配备不足(37%)
不合格产品(36%)
设备故障(32%)
数据分析是可行的解决方案
数据分析是制造企业成功实施工业物联网的关键组成部分。大多数受访者对数据分析作为解决方案所带来的收益持积极态度。比如,受访高管们承认大数据分析能够降低以下问题的出现频率:
设备故障(70%)
意外停机(68%)
计划外维修(64%)
供应链管理问题(60%)
受访者认为,数据有助他们得到必要的信息并实时做出正确决定(63%),减少浪费(57%),并预测停机风险(56%)。
赫德表示:“这其中的道理不难理解。这些高管明白数据分析能够帮助他们应对业务运营所面临的头号威胁 -- 意外停机。因此,他们觉得有必要继续投资。”
此外,超过三分之二的受访者(68%)表示,他们目前正在对数据分析进行投资。50%的受访者表示,自己所在的公司已经在数据分析使用方面步入了正轨。15%的受访者表示,其公司在数据分析使用方面走在了行业前列。
并非人人都采取了行动
尽管大多数受访者表示正在进行和/或计划在明年增加数据分析方面的投资,但仍有32%的受访者表示目前没有对数据分析进行投资,33%的受访者表示未来一年公司没有数据分析方面的投资计划或者不知道这方面有什么投资计划。
目前没有投资计划的受访者中:
61%的受访者认为现有系统能够确保安全性、保证产量,并帮助公司获得成功
45%的受访者表示在没有数据分析的情况下公司依然实现了增长
42%的受访者表示他们对大数据所能带来的好处不甚了解
35%的受访者表示人们夸大了大数据所能带来的好处
在没有投资计划的受访者中,63%的受访者表示他们没有这方面的合适资源,39%的受访者则表示他们没有合适的数据分析人才。
赫德解释道:“对于一些公司来说,部署工业物联网还存在着一些障碍。有些认为他们并不需要,另外一些公司则表示缺少合适的资源。好消息就是,工业物联网并不需要企业进行脱胎换骨的改变,它可以根据各个公司的情况进行阶段性渐进式实施和扩展。这也是霍尼韦尔将工业物联网称为演变,而不是变革的原因所在。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22