
制造企业利用大数据分析应对极具挑战的商业环境
一项针对200位高管开展的调查显示,大多数制造企业有计划明年增加数据分析方面的投资,即使需要推迟其他技术投资
霍尼韦尔成熟的自动化技术和服务能够助力制造业向工业物联网演变
美国得克萨斯州休斯敦2016年9月19日电 /美通社/ -- 霍尼韦尔 ( 纽约证券交易所代码: HON )过程控制部近期联合KRC Research研究机构开展的一项针对制造企业高管的调查显示,大多数受访者(67%)都在积极推进数据分析方面的投资计划以应对极具挑战的商业环境,即便削减其它领域的投资也势在必行。
当被问及原因时,很多受访者表示数据分析是工业物联网(IIoT)的关键组成部分,它能够有效解决导致停机和利损的一系列问题。
霍尼韦尔过程控制部数字化转型业务副总裁兼总经理安德鲁·赫德(Andrew Hird)表示:“企业高管们需要确保公司业务平稳且安全地运营。即便现金紧张,他们也希望能够利用工业物联网技术应对业务挑战。四十多年来,霍尼韦尔为帮助制造商实现这些目标提供了领先的自动化技术。 霍尼韦尔工业物联网 解决方案正是实现这场业务演变的下一步举措。”
来自北美制造业的200多位高管于2016年5月23日至6月8日参与了这项名为“数据对制造业的巨大影响:高管意见研究”的调查。其它主要发现包括:
一些公司表示不得不在意外停机和设备故障的威胁下继续运营,而这些因素是扩大收益的最大障碍。
大多数公司表示它们正在对数据分析技术进行投资。
25%以上的受访者表示明年不打算对数据分析进行投资。原因主要是对数据分析所带来的好处不了解以及资源不足。
艰难的停机周期
意外停机是收益最大化的头号威胁,不过42%的受访者承认在经营过程中有过让设备保持超负荷运行状态的操作。当被问及近年来出现一系列问题的频率时,71%的受访者表示至少偶尔会出现设备故障,64%的受访者表示出现过类似频率的意外停机。
赫德表示:“工厂设备超负荷运行会带来设备故障、潜在安全事故等一系列问题。这些问题不可避免地会导致更多的停机时间,从而造成收益损失。很显然,很多公司都陷入了这种恶性循环之中。霍尼韦尔高效的工业物联网解决方案所提供的预测性分析能够帮助公司走出这种恶性循环。”
40%的受访者认为意外停机是收益最大化的头号威胁。其他威胁因素包括:
供应链管理问题(39%)
人员配备不足(37%)
不合格产品(36%)
设备故障(32%)
数据分析是可行的解决方案
数据分析是制造企业成功实施工业物联网的关键组成部分。大多数受访者对数据分析作为解决方案所带来的收益持积极态度。比如,受访高管们承认大数据分析能够降低以下问题的出现频率:
设备故障(70%)
意外停机(68%)
计划外维修(64%)
供应链管理问题(60%)
受访者认为,数据有助他们得到必要的信息并实时做出正确决定(63%),减少浪费(57%),并预测停机风险(56%)。
赫德表示:“这其中的道理不难理解。这些高管明白数据分析能够帮助他们应对业务运营所面临的头号威胁 -- 意外停机。因此,他们觉得有必要继续投资。”
此外,超过三分之二的受访者(68%)表示,他们目前正在对数据分析进行投资。50%的受访者表示,自己所在的公司已经在数据分析使用方面步入了正轨。15%的受访者表示,其公司在数据分析使用方面走在了行业前列。
并非人人都采取了行动
尽管大多数受访者表示正在进行和/或计划在明年增加数据分析方面的投资,但仍有32%的受访者表示目前没有对数据分析进行投资,33%的受访者表示未来一年公司没有数据分析方面的投资计划或者不知道这方面有什么投资计划。
目前没有投资计划的受访者中:
61%的受访者认为现有系统能够确保安全性、保证产量,并帮助公司获得成功
45%的受访者表示在没有数据分析的情况下公司依然实现了增长
42%的受访者表示他们对大数据所能带来的好处不甚了解
35%的受访者表示人们夸大了大数据所能带来的好处
在没有投资计划的受访者中,63%的受访者表示他们没有这方面的合适资源,39%的受访者则表示他们没有合适的数据分析人才。
赫德解释道:“对于一些公司来说,部署工业物联网还存在着一些障碍。有些认为他们并不需要,另外一些公司则表示缺少合适的资源。好消息就是,工业物联网并不需要企业进行脱胎换骨的改变,它可以根据各个公司的情况进行阶段性渐进式实施和扩展。这也是霍尼韦尔将工业物联网称为演变,而不是变革的原因所在。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30