
打通产业线数据,“大数点”为制造业做数据分析来预测问题
中国的制造业离工业4.0还有很长一段路要走, 目前普遍的观点是大部分中国制造企业仍然徘徊在工业2.0-3.0之间 。工业2.0 指企业拥有自动化生产线,据德意志银行报告显示,截止至2012 年,中国自动化市场已达到千亿美元。而 工业3.0 是把自动化生产过程信息化,比如企业部署了ERP、MES(制造执行系统)等软件系统,来实时掌握生产信息。但这些产业线间的 信息是孤立的,数据没有联通,一旦某环节出现问题,也不知道影响因素是什么,生产效率仍然上不去。
基于此, “大数点” 做了工业大数据引擎与物联网解决方案, 其核心技术产品包括工业物联网总线 IoT Datahub 和基于Erlang构建的实时数据仓库。虽然该技术系统具备通用性 ,但要对接到具体的行业需要定制性开发,存在规模化的问题;加之,传统制造业难以赶超美国、德国,因此 “大数点” 选择 先做锂电池、新能源等更具前景的制造行业 ,其它行业如机械制造、石油天然气等,交由经其培训的代理商去做。
通俗的来说, “大数点” 是把所有产业线连接到云端,在云端集成相应应用,如ERP、MES、供应链和CRM等,以实现一个云端管理多条产线,而整个云平台由 “大数点” 来维护。这样的 好处在于企业灵活性提升,并且降低了企业IT运维成本。 更重要的是, 把 以往产业链中孤立的数据汇集到一起,能进行大数据分析。
数据串联的效果是,企业对整个工业流程有明晰的认识:在哪些环节上有问题、哪些环节比较关键等。此外还能基于机器的数据、生产的质量及速度等,预测是哪些影响了生产质量,哪些设备可能会出现状况,“比如说能够提前5小时或1天告知,有机器可能会宕机,企业能提前防范非计划性停产,避免更大的损失。” 大数点 CEO犹杰说。
那么我们自然会想到, 传统制造业的生产设备宕机的可能性大吗? 或者说这种预测是否真的有帮助?犹杰告诉36氪,国内大部分的做生产制造业的是中小型企业,由于资金没那么充裕,采购的设备相对来说故障率很高。
商业模式上, 大数点 会按照连接设备数目的多少、以及产生的数据量的大小收费。另外,若通过大数点的数据分析,帮助企业预防了事故,会按照事故转化的效益抽成。目前客单价在100-300万。
与 大数点 做类似事情的公司还有 Thingworks , Predix of GE, ProfiNet of Phönix, Sinalytics of Siemens等,与其它竞品相比,犹杰表示,“ 大数点 首创了在数据采集(流动中)时实现对数据实时过滤/处理的插件框架,支持过滤插件的可视化组合和动态载入,和R统计语言的数据建模映射到Erlang的数据处理函数,能实时处理海量数据。”
可以看出, 大数点实际做的主要是数据分析这块, 但传统有采集能力的企业已有相应的分析方案, 为什么需要大数点单独提供数据分析呢? 犹杰告诉36氪,传统的采集做分析往往效率较低或者效果不好,而且他们并不理解各种工业企业的业务逻辑,难以实现深层次的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01