京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据可视化实现六步走
在当前互联网,种种数据可视化图表层出不穷,本文试验对数据可视化的方法进行归纳,整理成6步法,1将指标值图形化;2将指标图形化;3将指标关系图形化;4将时间空间可视化;5将数据进行概念转换;6让图表动起来。
通常的数据图表都可以拆分成最基本的两类元素: 所描述的事物及这个事物的数值,我们暂且将其分别定义为指标和指标值。好比一个性别分布中,男性占比30%,女性占比70%,那么指标就是男性、女性,指标值对应为30%、70%。
一个指标值就是一个数据,将数据的大小以图形的方式表现。好比用柱形图的长度或高度表现数据大小,这也是最常用的可视化形式。
传统的柱形图、饼图有可能会带来审美疲劳,可试验从图形的视觉样式上进行一些创新,常用的方法就是将图形与指标的含义关联起来。
好比Google Zeitgeist在展现top10的搜索词时,展示的就是“搜索”形状的柱形,图形与指标的含义相吻合,同时也做了立体的视觉变化:
通常用与指标含义相近的icon来表现,使用场景也比较多,如下:
当存在多个指标时,挖掘指标之间的关系,并将其图形化表达,可提升图表的可视化深度。常见有以下两种方式:
联想自然或社会中有无场景与指标关系类似,然后借助此场景来表现。
好比百度统计流量研究院操作系统的分布,首先分为windows、mac另有其他操作系统,windows又包涵xp、2003等多种子系统。
凭据这种关系联想,发现宇宙星系中也有类似的关系: 宇宙中有许多星系,我们最为熟悉的是太阳系,太阳系中又包括各个行星, 因此整体借用宇宙星系的场景,将熟知的windows比喻成太阳系,将xp、window7等比喻成太阳系中的行星,将mac和其他系统比喻成其他星系,表现如下:
指标之间往往具有一些关联特征,如从简单到复杂、从低级到高级、早年到后等等。如无法找到已存在的对应场景,也可构建场景。
好比百度统计流量研究院中的学历分布,指标分别是小学、初中、高中、本科等等,它们之间是一种越爬越高,从低品级到高品级的关系,那么,这种关系可以通过构建一个台阶去表现,如下:
支付宝新出的个人年度账单中,在描述付款最多的三项时,构建了一个领奖台的形式:
凭据之前3步,可将指标、指标值和指标关系分别进行图形化处置。
以最简单的性别分布为例,可以获得一个线性的可视化过程,如下:
以上图示为供参考的线性化过程,实际可视化思考中,将哪类元素进行图形化或者图形化前后的顺序可能均有差别,需凭据具体情况处置。
通过时间的维度来检察指标值的变化情况,通常通过增加时间轴的形式,也就是常见的趋势图。
当图表存在地域信息而且需要突出表现的时间,可用地图将空间可视化,地图作为主背景呈现所有信息点。
Google Zeitgeist在2010和2012年的年度热门回首中,都是以地图为主要载体(同时也结合了时间),来呈现热门事件:
先看下生活中的概念转换,当我们需要喝水时,通常会说:给我来一杯水;而不会说:给我来30ml的水。在这里,30ml是一个实际数据,但是难以感知,所以用一杯的概念来转换。
同样在数据可视化,有时需要对数据进行概念转换,可加深用户对数据的感知。常用方法有对比和比喻:
下图是一个介绍中国烟民数量的图表:如若只看左半部分中国烟民的数量:32000000,知道数据量级很大,但具体有多大却很难感知;直到看到右半部分:中国烟民数量超越了美国人口总和,这样一对比,对数据的感知就加深了。
下图是一个介绍雅虎邮箱处置数据量的图表,大意是每小时处置的电子邮件大小有1.2TB,相当于644245094张打印的纸。
这又是一个很大的数据,但到底有多大? 在这里用了一个比喻的手法:644245094张纸,如若把每一张纸首尾对接,可以绕地球4圈多。到这里,能较深刻感受到雅虎邮箱处置的数据量之大,为地球节约了许多纸张。
更进一步地,还将这个比喻进行了图形化表现。
数据图形化完成后,可结合实际情况,将其变为动态化和可操控性的图表,用户在操控过程中能更好地感知数据的变化过程,提升体验。
实现动态化通常以下两种方式: 交互和动画。
交互包括鼠标浮动、点击、多图表时的联动响应等等,如下是百度统计流量研究院的时间分布图,接纳左图右表的联动形式,左图中,鼠标浮动则显示对应数据,点击则切换选择:
包括增加入场动画、交互过程的动画、播放动画等等。
入场动画:即在页面载入后,给图表一个“生长”的过程,取代“数据载入中”这样的提示文字。
交互动画:用户发生交互行为后,通过动画形式给以及时反馈。
播放动画:通常来是提供播放功能,像看视频一样,让用户能够完整看到数据随时间变化的过程。下图是Gapminder在描述多维数据时,提供随时间播放的功能,可以直观感受到所有数据的变化。
总结
数据可视化形式多样,思考过程也不尽相同。以上6步法,是基于“数据”层面(区别于信息可视化),梳理思考过程,总结设计方法,为后续可视化提供可借鉴的思绪。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27