
数据专家在大数据分析中的作用
大数据科学家的工作从企业的业务问题开始,下一个步骤是创建分析计划,即一些企业称之为“数据分析计划。”当然,你需要考虑到数据科学家的不同专业背景,如有数学界、软件工程、市场营销学、工商管理等等,几乎所有的数据科学家都会从他们的专业领域出发,设置各种技巧最终整合制定出专注于解决业务问题的计划。
数据科学家和他们的分析团队的计划提出了如何组装数据集,并制定了一个数据如何被用来解答业务问题的计划。
分析计划还可以成为数据科学家们进行交流和业务协作方面展开分析工作的又一利器。
分析工作
一旦分析计划获得批准并开始实施到位,数据科学家将利用一系列的工具和方法开始他们的分析工作,其中一些分析工具和方法可能是他们的企业所专有的。
数据安全
数据科学家甚至通过设置如何使用和操作业务数据的先例和政策,在大数据安全方面也起到了重要作用。通常情况下,数据科学家和他们的团队甚至有不受权限阻碍地进入到可能带来的业务的新的数据集的权利,然后帮助企业定义数据应如何杀毒,以保持分析业务的价值,同时最大限度地降低安全风险,并满足必要的合规性规则。
与高级管理人员的互动
数据科学家的角色可能会具有某类个性的吸引力,他们不总是处理与企业管理方面的数据,尤其是但这些大数据对于企业来说仍然新的、或者只有企业高层才有权限访问的数据。根据唐斯博士介绍:“这取决于企业的重点和规模。在某些情况下,企业的业务和产品都是建立在科学数据的基础上的,就像在Globys一样,在这种情况下,数据科学的访问权限代表了一定的行政级别。
他进一步补充道,“企业数据的科学驱动的是企业业务的测量和优化,而不是企业的产品,数据科学在对业务影响中起着直接报告的功能——例如移动运营商可能在品牌和营销功能方面的执行水平要同时直接报告,而金融服务可能是通过首席风险官。”
大数据产品化
虽然我们一直在数据运行领域努力,但数据科学家在大数据的大规模操作方面可能会扮演一个角色,加快大数据项目的产品化。这通常只发生在大数据输出具备市场价值,而且通过努力可以一次性的或通过订阅出售给外部客户。
知识产权和大数据
数据科学家可能已经通过诸如专利工作将保护知识产权作为自己角色定位的一部分了。保护知识产权可以是一个总体规划或基于自组织(ad hoc)的发现。而在中型企业或外包服务商的数据科学家的工作可能不包括处理知识产权问题,在大公司的数据科学家需要追求知识产权,以便保护他们的雇主市场上对于竞争对手的竞争优势。知识产权是面向客户的软件和服务。保护知识产权对于企业内部大数据工作则不是那么重要。
随着大数据在当前企业受关注度的日渐提升,我认为,知识产权保护将要成为数据科学家们的一个不断增加的工作部分,来确立自己所宣称的大数据的创新者和思想领袖的地位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16