京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据驱动下 一场管理革命或将爆发
管理大师戴明(W.Edwards Deming)与德鲁克(Peter Drucker)在诸多思想上都持对立观点,但“不会量化就无法管理”的理念却是两人智慧的共识。这一共识足以解释近年来的数字大爆炸为何无比重要。
简而言之,有了大数据,管理者可以将一切量化,从而对公司业务尽在掌握,进而提升决策质量和业绩表现。
关于亚马逊那些耳熟能详的故事遮蔽了它的真正实力。这些先天带有数字基因的公司所能做到的事,是上一代商业领袖梦寐以求的。但实际上,大数据的潜力也可以帮助传统企业实现转型,甚至帮它们获得更好的机会提升其竞争优势(线上企业一直都知道其核心竞争力来自于对数据的理解力)。
这场大数据的革命远比之前的“数据分析”要强大得多。企业因此可以做精准地量化和管理,可以做更可靠的预测和更明智的决策,可以在行动时更有目标更有效率;而且这些都可以在一直以来由直觉而不是数据和理性主宰的领域实现。
随着大数据之工具与理念的不断传播,许多深入人心的观点将被撼动,比如经验的价值、专业性与管理实践。各个行业的商业领袖都会看清运用大数据究竟意味着什么:一场管理革命。
数据决定业绩
怀疑论者会问:“有何证据显示,明智地运用大数据能提升公司业绩?”商业媒体上充斥着各种轶事案例,似乎在证明大数据驱动带来的价值。但我们最近发现的事实是,根本没人真正拿出严谨有力的证据。
为了弥合这种尴尬的缺失,我们在麻省理工学院的数字商业中心(MIT Centerfor Digital Business)组织了一个团队,与麦肯锡的商业技术部、沃顿商学院的同事洛林·希特(Lorin Hitt)以及麻省理工学院的博士生西克扬·金(Heekyung Kim)一起合作,考察大数据驱动的公司是否业绩更佳。我们对北美330家上市公司的高管进行了结构性访谈(structured interview,这是一种对访谈过程高度控制的访问。访问的过程高度标准化,即对所有被访者提出的问题,提问的次序和方式,以及对被访者回答的记录方式等是完全统一的。—译者注),调研其组织与技术管理实践,然后从年报和其他一些独立信息源那里收集它们的业绩数据。
很显然,不是每家公司都喜欢数据驱动型的决策制定过程。事实上,我们发现,各行各业对大数据的态度和应用方法五花八门。但是,透过所有的分析,我们发现一种显著的关联性:越是那些自定义为数据驱动型的公司,越会客观地衡量公司的财务与运营结果。尤其是,运用大数据做决策的那些行业前三名企业,比其竞争对手在产能上高5%,利润上高6%。如果把劳动力、资金、购买服务和投资传统技术的投入都纳入计算,这些企业的表现依然卓越。它不仅有统计学上的显著性和经济上的重要性,而且也反映在其股票估价的增值上。
五大管理挑战
大数据转型并不是万能的,除非企业能成功应对转型过程中的管理挑战。以下五个方面在这一过程中尤为重要。
领导力
那些在大数据时代获得成功的企业,并不是简单地拥有更多或者更好的数据,而是因为他们的领导层懂得设计清晰的目标,知道自己定义的成功究竟是什么,并且找对了问题。
大数据的力量并不会抹杀对远见与人性化洞察的需求。相反,我们仍然需要这种领导者—他们能抓住某个绝好的机会、懂得如何开拓市场、用自己的创意提供那些相当新奇的产品和服务,并且巧舌如簧地勾勒出一幅激动人心的前景,说服下属们激情澎湃地为此拼命工作,最终成功赢得顾客。未来十年获得成功的企业,其领导者必然具备以上特质,与此同时推进了公司决策机制的转型。
人才
随着数据越来越廉价,实现大数据应用的相关技术和人才也变得越来越昂贵。其中最紧迫的就是对数据科学家和相关专业人士的需求,因为需要他们处理海量的信息。
统计学很重要,但是传统的统计学课程几乎不传授如何运用大数据的技能。尤其需要的能力是将海量数据集清理并系统化,因为各种类型的数据很少是以规整的形态出现的。
视觉化工具和技术的价值也将因此突显。随着数据科学家的涌现,新一代的电脑工程师必须能够处理海量数据集。而设计数据试验的技能,则会非常有助于弥补数据呈现的复杂关系与因果之间的鸿沟。除此之外,那些最优秀的数据科学家还需要掌握商业语言,帮助高管把公司面临的挑战变为大数据可以解决的形式。毫无疑问,这类人才炙手可热,很难找到。
技术
处理海量、高速率、多样化的大数据工具,近年来获得了长足的改进。整体而言,这些技术已经不再贵得离谱,而且大部分软件都是开源的。Hadoop,这个目前最通用的平台,就整合了实体硬件和开源软件。它接收涌入的数据流并将其分配至很便宜的存储盘,同时它也提供分析数据的工具。
尽管如此,这些技术需要的一整套技能对大部分企业的IT部门来说都是全新的,他们需要努力将公司内外所有相关的数据都整合起来。只有技术远远不够,但技术是整个大数据战略中不可或缺的部分。
决策
一家高效的公司通常把信息和相关的决策权统一在一起。而在大数据时代,信息的产生与流通,以及所需人才都不再是以往那样了。精明的领导者会创造一种更灵活的组织形式,尽量避免“自主研发综合症”,同时强化跨部门合作:收集信息的人要提供正确的数据给分析数据和理解问题的人,同时,他们要和掌握相关技术、能够有效解决问题的人并肩工作。
文化
大数据驱动的公司要问自己的第一个问题,不是“我们怎么想?”而应该是“我们知道什么?”这要求企业不能再跟着感觉走。
很多企业还必须改掉一个坏习惯:名不副实的大数据驱动。我们发现很多这样的企业,最常见的表现是,高管们明明还是按传统方式做决定—以些高薪人士的意见为主,却拿出一份香艳的数据报告支撑自己的决定是多么英明。其实那不过是分配下属四处寻找的专为这个决定做辩护的一堆数字。
证据一目了然:大数据驱动下的决策更高明。高管们要么拥抱这一现实,要么卷铺盖走人。在各个领域中,企业只有找到将数据科学与传统技能完美结合的方式,才能打败对手。我们不能说,所有的赢家都会将大数据用于其决策制定。但数据告诉我们,这样确实胜算最大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22