京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从入门到精通:互联网数据分析书籍清单
任何一个技能的学习,都有从浅到深的过程,数据分析也不例外。一个完整的数据分析知识体系类似金字塔结构:最顶层是对数据价值的认知、业务理解,中间是数据分析方法论,而最底层则是数据分析的解决方案或者具体的操作方法。我把数据分析的推荐书籍划分成三个段位,便于大家渐进式学习。
入门版适合数据分析的入门者、对数据分析没有整体概念的人,常见于应届毕业生、经验尚浅的转行者。
入门版推荐书籍
《深入浅出数据分析》:O’Relly出版的HeadFirst (深入浅出)系列书籍之一,书中有大量的图片和有趣的案例组合。本书浅显易懂形象生动,可以使入门者对分析的概念有个全面的认知。
《谁说菜鸟不会数据分析》:本书详细介绍了数据分析的基本方法和过程,并且以Excel表格为例进行了案例阐述。同时本书还介绍了数据分析在职场的意义,可以帮助职场小白快速上手。
《赤裸裸的统计学》:作者年轻时是个追求学习的学霸,后来自己从统计学中发掘了很多可以应用到生活的地方。这也是本书的主旨,结合生活讲解统计知识,生动有趣。可以避免统计学一上来就大讲贝叶斯概率和随机分析的枯燥。
同样类似的书籍还有《统计数字会撒谎》,这本书知名度要高点,通过揭露“虚假数字信息”来帮助大家理解背后的统计学原理。
进阶版具有一定的行业针对性,要求分析者具备一定的数据分析常识和业务理解;适合网站分析师,商业分析师以及数据产品经理等人群。
进阶版推荐书籍
《精通 web analytics 2.0》:Analytics将点击流网站分析工具与定性数据、测试与试验以及竞争情报工具相结合,从而推演出详尽的网站战略以及操作层方案。此书虽老,但其中很多思想和流量分析的案例仍然很有借鉴意义,现在国内只能买到二手的旧书。
与此类似的有《网站分析实战》,是国内一本讲网站分析的书,没有上面经典,但胜在新出,很多案例和理念都有及时的更新。
《深入浅出统计学》:与上面的《深入浅出数据分析》同属于Headfirst系列书籍,运用充满互动性的真实世界情节,帮助读者快速了解统计方面的理论知识。
《数据化管理》:黄成明著,讲解在企业中应用数据的例子,读完受益匪浅,里面举的很多例子都很接地气。虽说偏向于零售业管理,但大道归一,可适用于很多行业,当时依据里面的理念规划了美团外卖面向 BD 的数据产品。
《MySQL必知必会》:这本也是我当年学习 SQL 的入门书,薄册子一本,看起来很快。SQL 是个性价比很高的技能,简单而强大。任何想进一步提高自己数据分析技能的产品/运营/分析师 同学,都建议点亮这个技能点。
《互联网增长的第一本数据分析手册》:全书以增长为主题。这本手册介绍了互联网创业企业增长方法论、互联网数据分析的常见方法(趋势、转化、留存、实时、分群、细查、热图)、细分行业(如SaaS、互联网金融、电商等)的应用。
更高阶的数据分析相对来说专业性就强了,如涉及到企业内部数据治理,数据结合的业务分析,数据可视化等。当然,还有数据挖掘算法之类的更深入的东西,这块没有研究就不瞎推荐了。
高阶版推荐书籍
《决战大数据》:阿里巴巴前数据副总裁车品觉老师所著,讲解了阿里巴巴在企业内部治理数据过程中的心得,所讲“存-通-用”数据管理三板斧和“从数据化运营到运营数据”,字字珠玑,可堪借鉴。
《精益数据分析》:此书优势在于将企业分成了几个大的行业类别,并分门别类的讲解了每个行业的商业模式特点及分析技巧,对使用者的分析能力要求较高,且必须具备相应的业务知识。
《The Wall Street Journal Guide to Information Graphics》,华尔街日报负责商业分析的人做的可视化指南,精华且实用,我之前写过读书笔记《华尔街日报是这样做数据可视化的》,可供大家参考。
《数据仓库经典教程》:网上有人整理出来的资料,优点是简单明了,不像正常的数据仓库教材厚厚一本。
当然,数据分析是一门很深的学问,我也只是窥得冰山一角。要想做好数据分析必须具备多方面的技能:需要看清数据的价值并且懂业务,需要熟知数据分析的方法论,同时也要熟练掌握数据分析软件的操作。在学习上面数据分析推荐书籍的同时,不断在实践中加深自己的理解,用数据来驱动业务和客户增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27