
大数据分享将变得尤为重要
目前的中国大数据市场就好像是古代群雄逐鹿的中原,大家都说自己是大数据时代的‘诸侯’。如果对数据理解不够深刻,对自己的定位不够准确,很多公司会在市场验证的过程中被淘汰掉。
数据时代本身PK的是实力,谁对数据的理解更深,谁在行业积累沉淀更多,谁在数据行业中扮演的角色就更重要。眼下,族谱科技(北京)有限公司已在大数据领域颇有建树,获得2000万天使轮融资,pre-A轮公司估值8亿元。采访中,族谱科技的创始人、CEO张力铭向本报记者介绍了自己对大数据产业发展的看法。
大数据并不在“大”,而在于“用”
记者:有人说“大数据时代,得数据者得天下”,也有人说“数据需要分析、挖掘才能产生价值”,您认为在大数据时代要如何取胜?
张力铭:大数据并不在“大”,而在于“用”。对于很多行业而言,如何有效应用这些大规模数据、挖掘出更大的价值是成为赢得竞争的关键。大数据的应用是属于场景的应用,在不同的行业细分领域的应用过程都是一个场景,根据不同的场景应用,用不同维度的数据去对这个场景进行支撑。
大数据在不同行业有不同的应用场景,但都有一个典型的特点:无法离开以人为中心所产生的各种用户行为数据、用户业务活动和交易记录、用户社交数据,这些核心数据的相关性再加上可感知设备的智能数据采集,就构成了一个完整的大数据生态环境。比如在教育培训行业,场景应用是围绕课程和学员进行的,通过分析有特定属性的一个用户,包括用户的各种成绩、年龄以及性别等等,对一些特定类型的讲课方式以及对课程的搭配上,有针对性的开展课程。
通过族谱科技全方位、多维度数据研究发现,未来各个领域将以“准确”“高效”“先知”的数据应用场景为导引,形成新的数据预测未来的格局。大数据场景应用时代已然来临,并且进入到实用阶段。
市场是检验企业成功与否的“战场”
记者:目前中国大数据运营服务领域的现状如何?族谱科技成立仅一年多便能获得市场认可的成功之道是什么?
张力铭:世上有两种东西是很真实地体现企业和个人的价值,一个是时间,时间可以说明一切;还有一个是市场,它是用价值去衡量企业的。
市场是验证一个企业好与坏的最后“战场”,也是最不会说谎的一个行为。大数据公司要获得市场验证,前提是要在大数据领域有所建树。族谱科技的发展逻辑是“用产品说话,用数据开道”——以数据为中心,所有的产品都围绕数据进行研发,用数据衍生产品,这是族谱科技永不动摇的发展原则。从成立之初,族谱科技就不断丰富数据池,如今行业数据服务平台已包含企业、生活、通信、医疗等多行业数据信息,不仅维度广泛,而且体量巨大,彻底打破了单一的数据孤岛,形成了强大的数据生态圈。我们将坚持务实、实干,未来要做中国最大的支撑行业场景应用数据服务公司。
国内大数据的发展与国外相比差异并不大,形象上的差异就是对大数据的理解。2014年到2015年,国内关于大数据的各种概念不断涌现。目前的中国大数据市场就好像是古代群雄逐鹿的中原,大家都说自己是大数据时代的“诸侯”。如果对数据理解不够深刻,对自己的定位不够准确,很多公司会在市场验证的过程中被淘汰掉。
大数据分享将获取更大的价值
记者:您对大数据产业的发展趋势有何看法?
张力铭:随着大数据从概念渗透转向应用发展,大数据产业正处在蓬勃发展的孕育期与机遇期。大数据产业在数据和应用驱动的创新下,不断丰富商业模式,构建出多层多样的市场格局,产业生态也将得到不断完善,而大数据的应用将成为未来十年产业发展的核心趋势,大数据产业链条的应用层级也成为发展机会最大的投资领域。
数据的价值需要用IT技术去发现、去探索,数据的积累并不能够代表其价值的多少。随着产业应用层级的快速发展,如何发现数据中的价值已经成为市场及企业用户密切关注的方向,因此大数据分析领域也将获得快速的发展。
未来,大数据分享将变得尤为重要。例如在医疗行业,如果每一个医院对自己的数据进行分析,就能获得相应的价值;但是如果想获得更多更大的价值,那么就需要全国甚至全世界的医疗信息共享,这样才能够通过平台进行分析,获取更大的价值。
随着数据价值的越来越重要,大数据的安全稳定也将会逐渐被重视,无论对数据存储的物理安全还是对数据的管理方式都要求越来越高,从而对数据的多副本与容灾机制提出更高的要求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08