
大数据时代给服装行业带来哪些巨变
大数据时代,食住行行业都在发生翻天覆地的变化,服装行业又有哪些任何动静?
马云还能笑多久?大数据服装电商来袭
黑马说:电商上,服装品类交易额占总量的30%多。在大众心智中,买电器到京东、苏宁,买图书到当当、亚马逊。剩下的服装品类以淘宝为首,多家电商竞争激烈。但是,淘宝的C2C模式潜伏着严重的弊端。淘宝如果不从传统的服装产业链寻求改变,未来五年必死。为什么这么说呢?
我们要先看一下淘宝的商业模式。不考虑支付宝,淘宝的C2C模式是这样的:
图1 淘宝的商业模式
但在“卖家”两个字的背后,隐藏着庞大的产业链。
传统的服装产业链是这样的:一位在服装公司工作的设计师,会根据服装公司现有的布料,每个月画上百张图,其中也许有一两个款式会被设计总监通过(也许一个都没有),然后交给打版师,服装公司会预估这个款型衣服的销量,比如1000件,按照SSS码~XXX码生产出来。如果是淘品牌,这时就会直接放到自家的淘宝店上开始营销、销售;如果是传统服装公司,则会把服装以一定折扣价格交给网络/实体经销商。
图2 淘宝的服装品类产业链
其中的打版、投资生产、经销渠道等等专业分工,设计师无法独立完成,只能由公司做代表,依托品牌,在淘宝等各种平台上销售服装。
服装企业之所以会价格高,还有一个很重要的原因是要平衡库存成本,这其中包括仓储的硬件成本、人员成本、还有报废成本。服装行业有句老话:卖服装卖一辈子,钱没挣到什么,就挣到一库存的衣服。
通过大数据和众筹, 目前国内数家新兴的服装电商公司已经通过C2B、DP2C等模式,解决了上述问题。
C2B模式电商
C2B模式的特点是,客户提前下单,商家根据客户需求,按需生产。这样可以大幅度缩减库存成本和预生产成本。目前服装行业最有代表性的就是高端西服私人订制。
但订制西服的最大成本就是,每一件西服都需要单独打版,一个老打版师需要1万月薪,而一个打版师每天最多只能做两个版。从而制约了西服订制行业的发展。
但通过大数据分析,在海量数据的基础上,计算机自动打扮成为了可能。比如红领西服,通过大数据电商平台,可以分析出每一位客户每厘米身体差异所带来的版式变化,不需要打版师,每天可以处理2000件以上的订单。
彭丽媛获赠羊绒披肩 衣服尺寸来自“大数据”
当地时间10月21日上午,习近平和夫人彭丽媛在伦敦访问帝国理工学院,并且参观了该校的数据科学研究所和哈姆林中心。
据介绍,这件披肩是采用彭丽媛的公开照片,通过计算机图像分析技术,计算出衣服尺寸的。
数据科学研究所向彭丽媛赠送了一件苏格兰羊绒披肩。有趣的是,这件披肩由该研究所采用彭丽媛公开照片,通过计算机图像分析技术,计算出彭丽媛的衣服尺寸而制成。
数据科学研究所所长郭毅可教授向南都记者介绍,习近平约在上午10点到达帝国理工学院,并在校门口作了简短讲话,然后来到数据科学研究所参观。
郭毅可向习近平展示了一些大数据研究的工作。包括运用大数据的方法分析国内人口迁移情况,“一带一路”政策的国际影响力,个性化医疗的推广,以及上海地铁的负载分布和应急办法等。
中国消费潮流趋势大数据报告之90后服饰潮流图谱
淘宝经常发布一系列关于中国消费潮流趋势的大数据报告。从中我们可以发现很多有趣的事情。比如内陆地区,如新疆消费者最爱在网上买比基尼;上海老人最“潮”;北大学子多“情圣”;文艺青年多在江南;四川“妹纸”爱裙装;重庆美女最爱皮衣皮裤;江苏亲们多“果粉”……最近一期数据,我们可以发现很多关于90后消费的特点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22