京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以一个操作流程为例,探讨产品的数据分析逻辑
数据分析能力也是产品经理的核心能力之一,但是很多人认为数据分析是运营该具备的能力,其实不是的,运营和产品不是同一个维度的数据分析,况且运营也没产品熟悉整个设计流程,经验不足的运营想要可观的去提优化产品的需求几乎是不可能的,今天举个小栗子来谈产品经理的数据分析能力。
以某款产品为例,我们来看它的首页逻辑:
首页相当于摘要将主推的产品展示出来,以理财产品为例子,会将收益很高的产品放在首页展示。当我在首页点击某个理财产品进入产品详情时,这时候首页导流转化已经完成了,但我当我查看商品详情以后,我发现我并不感兴趣,于是我退出。这个时候,请问该退到哪里去?
按照常理说,是要退回首页的,但是此刻退回到首页的逻辑是否合适,是我思考的问题。
假设我今天想去逛街,但我也不知道买什么,在一家商店中有卖上衣、裤子、内搭、裙子等多款产品,我看到了一款上衣很别致,试了一下不是很满意,脱掉,请问接下来店员会如何服务我?是问我您需要裤子,上衣,还是裙子?还是会问,那您看这一款上衣怎样,比您身上这件会更显身材些? 我想大多数情况都是后者,店员觉得我有买上衣的倾向,既然不喜欢,可以推荐其他款上衣,如果我表示不想看了,他才会继续推荐店里还有裤子和裙子等,可以随意浏览一些。那同样的,如果我对这款理财产品不感兴趣,可能会对其他理财产品感兴趣呀,所以如果我让用户退回理财列表,供用户来查看其他理财产品,是不是更合适些。这时候问题来了,有人提出异议,你从首页进入产品详情,退回到产品列表,而不是首页,用户会迷茫的。OK,此时,就需要你用数据分析的能力来去证明这样的设想是否可行?那么怎么去设计数据维度来支撑你的设计呢?
首先,纠结的点在于到详情页面以后退回的路径是首页还是理财列表,那我要证明的点必然在这个过程中的转化,那有以下三种情况:
以上场景用思维导图标识如下:
这三个数据指标的统计可以清晰的展示出用户的行为习惯。它分别展示了用户讨厌进入产品列表,用户对首页更感兴趣,用户更愿意查看其他理财产品,这是基础的数据源,按照比例我们基本就可以做出判断,但是这个数据只能说明需求是否可行性,比如说用户退出率很低,那就证明这个路径对用户影响并不大,就可以尝试。但是这还不够,这并不能证明这种设计是否能带来收益,数据分析还要继续细挖。
分析导图如下:
1、用户列表页直接退出应用。 一种可能是用户迷失,气愤离开;一种可能是有事偶然退出;一种是虽然没进入详情页,但是加载了当前的理财产品,一般首页都会先加载出10条数据,用户上推会继续加载10条,这个动作是可以统计的,这个场景是用户只是没进详情,但还是大致看了一眼你有多少种产品,也会潜在增加产品的曝光率。当然这个是场景推测,其实这部分数据就都算气愤退出也没什么。
2、用户从列表页回到首页。然后退出应用,可以认为是用户自然的行为;用户继续浏览其他频道,那可以认为用户的行为没受到影响。
3、用户从列表页进入了其他产品详情页。也就是说,用户浏览了其他一款或者多款产品,这个说明,这个引导是用户认可的,他比较感兴趣去查看了其他的理财产品。更好的情况是,用户查看过后,在某个产品上下单,实现了最终的收益转化,这个数据的统计就显得格外有意义了。
所以,浏览列表+进入其他频道+回首页退出此类行为其实并没有对用户造成致命的强迫退出,可以只做参考,然后浏览其他产品+下单的转化率,这部分数据即可评估产品这样设计的效果了,目测是没有问题的。
作为一个野路子的产品,很多时候都是靠直觉,在数据分析这块研究刚刚起步,非常浅薄,欢迎有经验的同行们来指点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31