
首先要善用数据分析 才能对症下药去想涨粉变现的事
昨天聊到公众号最赚钱的地方就是广告,和卖产品比起来,用公众号发广告赚钱确实是省时省力省心。但是,做到这样的前提是,我们公众号粉丝要足够多,粘合度要足够高,这样才能够好好利用粉丝带来的经济效益。这就要求我们运营公众号时要时刻关注后台文章数据动态,了解每一次发文后涨粉了多少,掉粉了多少,根据这些相关数据分析问题,及时调整公众号的运营策略,维护粉丝粘合度。那么,如何做文章数据分析呢?
说到数据分析,大家想到的大多都是用户分析和运营分析吧。用户分析可以让我们知道粉丝的性别、所处的地域、所用的手机型号等,有利于我们精确分析出粉丝所属群体、消费能力,从而对症下药。运营分析则可以帮助我们分析公众号的经济效益。而文章数据分析却比较少人提及,但这一环节在增加文章影响力、增加粉丝粘合度中却能发挥极大的作用。
在我看来,文章数据分析主要是指每天推送的每篇文章的阅读量、转发量和点赞。通过这三个数据我们可以看出一篇文章对粉丝的吸引程度。其主要有两个方面,一是不同类文章对比,二是同类文章对比。
一、不同类型文章对比
我们用得最多的就是不同类型文章对比了。
如果一篇文章阅读量、转发量和点赞数都很高,那么我们可以主要从这篇文章的标题、内容出发,了解粉丝对什么类型的标题更感兴趣,对什么样的内容更具有共鸣。当然这些数据并不是一下子就能够看出来的,我们需要和往期文章进行对比,跨度可以按周或者按月来选择。
比如八月的一篇文章阅读量特别高,那么我们就将其前一周或者前一个月的文章都列出来,将他的数据和往期的这些文章进行对比,思考为何这篇文章的阅读量就偏偏领先于其他文章。可以从标题、行文风格、图片风格、排版等找出其中阅读量较高文章的共同点,找出好文章的共同规律。
转化率
为了更加直观的看出文章的效果,我们也可以加一个转发阅读比,暂时就称它为转化率吧。转发率=转发量/阅读量×100%。通过转化率,我们可以看出文章的质量,在我看来,一篇文章的转化率为4%才算合格,也就是一篇1000阅读量的文章转发量要达到40以上的转发量才算合格。
这种转发率的计算,我们可以通过Excel表格,制作函数公式制作出来,按周或者按月通过表格一一列出来,这样就一目了然。
二、同类文章对比
除了以上这种方法,我们也可以将文章按以下四种情况进行分类,同类之间进行对比。
第一类:阅读高,转发高。这种文章是重点研究对象,找出他们所具有的共同点。
第二类:阅读低,转发低。这种文章是我们重点反思的对象,除了找出这类文章的共同点外,我们也一定要将其和第一类文章进行对比,找出其自身缺点,看看这篇文章坏在哪儿了。
第三类:阅读高,转发低。这种文章大部分都是标题能够引起人们的阅读兴趣,但是内容却不怎么样,或者并没有引起读者的共鸣。吸引人的标题虽然能够增加阅读量,但不一定带来高转发率。我们需要避免出现这种文章。
第四类:阅读低,转发高。这种文章主要是一些专业性的干货,虽然对很多人有用,但是内容非常干,很多人只看重他是干货但是阅读起来却很难读,因此转发高却没多少人看。还有一种就是搞活动做优惠的文章,转发量大但没多少人阅读。
依据这四种情况,我们通过Excel表格将这些文章分成这四类,同样,按每周或者按每月进行汇总。接着就是和以上的步骤一样了,总结。
好文章的共同特点
最后,跟大家分享一下转发高、阅读量高的好文章的共同特点。
1、一个好标题
这个就不用多说了,一个好的标题可以起到画龙点睛的作用。在现在“眼球第一”大众传播社会中,吸引眼球是达成传播的第一步,因此一个醒目的标题,现在闲的尤其重要。当然,我们不能去做那种标题党,这虽然能够吸引阅读,但是按长久来说,这样做很容易掉粉的。
2、一段好内容
虽然好的标题能够吸引粉丝阅读,但是让读者点进去这只是起点。文章里面的内容如果不能吸引读者,那在高的阅读量都没有意义。对于一个读者而言,好的标题引起了他的阅读兴趣,如果他点进去发现内容并不能符合他的期望值,并不能让他读起来获得满足和享受,那么公众号很难对他产生粘性。
3、一个长篇幅
虽然说短篇幅的文章简单易读,符合现在的快节奏生活。但是事实上,和短篇幅文章相比,更易于转发的是长篇幅的具有深度的文章。
4、一个低的认知成本
文章易于阅读易于理解,越容易被点击和转发。像那种干货类的文章转发量一般都很高,但我们要注意的是,干货文章不能写的太专业,不然转发上去了,可阅读量却没上去。
我们通过以上两个分析方法总结出规律,同时结合这好文章的四个特点来撰写文章,肯定会事半功倍的。
说起公众号运营,对于公众号初级运营者来说肯定都感触颇深,尤其是在数据分析这一块,能够学到很多东西。要统计什么数据、如何去统计、如何通过这些数据看出公众号运营存在的问题......这一轮下来对初学者来说几乎是蜕了一层皮,就感觉像是玄奘西天取经一样,遇到种种困难,但是取完真经后,便是快乐欣慰的时光了。因此,对于数据分析,我们不用害怕,虽然我们一直是在路上学习,但是通过对这些文章的数据进行分析,我们总能找到规律的,按着这些规律来写文章,就不用愁吸引不了粉丝、增加不了粘合度了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22