京公网安备 11010802034615号
经营许可证编号:京B2-20210330
三点经验给有志于从事数据分析师的年轻人
现在确实是属于数据分析师的天下了,如果你有能力,有经验,充满好奇心以及永不倦怠的热情,作为数据分析师的你可谓前景广阔,有一大批公司乖乖站在你家门前挂着牌子等着你的挑选。
但是在评估到底去哪家公司的平台上施展你的才华的时候,却是有着很多考量的。即便是一个从业多年的老手也不可能在各种大小规模不一,发展阶段不同,拥有各自的企业文化的公司待过。他们也不可能横跨多个领域,掌握多种技术。本文着重给所有有志于从事数据分析师这个职业的年轻人一些经验。大体上总结一下就三点内容,凭借这三点内容,你可以非常理性、客观地分析出来眼前的这家公司到底是否值得去。
1 去供职于那些利用数据分析来做市场战略定位的公司
公司想要在市场上拥有特殊的竞争优势,从而实现与众不同的市场地位,其实途径方法都有很多种。有一些利用价格来区分自己,比如靠低价来获取市场竞争优势;还有一些公司愿意通过更加优质的产品来达到鹤立鸡群的效果;更有一些人通过订单处理进程的快慢赢得顾客的认可与忠诚,更快的配送上门服务就是很好的例证。
一个数据分析师应该选的这家公司,应该凭借数据学来做到自己与其他竞争对手之间的「切割」。请注意,有可能数据学可以用来支持更低的价格,更优质的产品,更快的配送速度,但是它绝对不是实现这些优势的主要原因。直接,且主要的原因通常情况下是规模经济造成了更低的价格,专利和品牌带来了更加优质的产品,自动化的技术使得配送速度提升。如果公司核心竞争力是构建在数据和分析工具上,那么它会迅速跟其他竞争者拉开几个身位。
一旦这种优势得以建立,整个公司都会瞄准数据学发力,所有的资源都是围绕着数据分析投入。它会更加愿意投资,获得数据领域最顶尖的人才,打造最优秀的底层系统,不断地将最前沿的算法和计算技术推向极致,开发各种不可思议的工程产品来展现数据学的魔力。
在做市场上战略区分的时候,「足够好」这个词是绝对不能出现的。公司和数据分析师双方都应有着足够强烈的意愿,推动技术再往前发展一点点,永无止境地去摸索极限,并愿意承担更多的风险。你每天早上起床睁眼的时候,你一想到这个公司,就能兴奋的一个鲤鱼打挺立刻翻身下床,精神抖擞,迫不及待的开展全新一天的工作,它是一个能够拉动提升你,让你成为这个世界最优秀人才的平台。
2 去为一个拥有伟大想法的公司工作
在考虑到底哪个公司能成为将来人们口中最伟大的那家公司的时候,也许「利用数据分析实现市场竞争优势」是一个必要条件,但并不是充分条件。这个公司同样必须拥有世界级的数据才可以。
首先得找到一家真正拥有数据的公司。在评估初创公司早期价值的时候,区分「数据拥有者」和「数据向往者」是非常重要的。最理想的状态是,你将找到一家拥有足够数据量,并且已经开始着手做一些有趣事情的公司。几乎所有的公司在成长过程中,数据量都会不断扩大,但是如果你选择了一家已经拥有足够级别数据量的公司,那么它的潜力,可发展性将会提升到另外一个层次。
确定好了公司,接下来我们要看这个公司所拥有的数据都是哪些。它是否足够有趣,并且具有丰富,且待挖掘的深刻意义。作为数据分析师,你接下来每一天的工作中最重要的一部分内容就是不断探知你所打交道的这些数据所蕴含的真实信息量,挖掘出它们的最大价值。刚才说到了两个标准。其一是「有趣」,即能够迫使你去利用创新思维解决问题,测试某些猜测,推动你去开发出全新的算法与应用。其二是「丰富内涵,深刻意义」,即数据应当是充满可挖掘性的,应用应该是优秀的,它们都应该是塑造市场竞争优势的最有利的武器。
最后,不要眼光全部锁定在「大数据」这件事上。数据分析这个领域地位的崛起,刚好凑巧碰上了「大数据」这个概念的崛起。但是它们不是一个东西。超大规模的数据量并不一定带来足够深刻的洞见,也并不一定是必要的。去寻找那些信息密集度大的数据,而不是光从量上着眼判断。
3 选择给一家即将进入空白市场的公司
当评估市场机会的时候,去选择一个还没有将成型的解决方案的公司。几乎所有的公司都已经有了一些成型的应用,当然数据分析师是必要的岗位,但是更值得去选择一些拥有明确研发方向,强有力的数据研究团队,但是仍然还处在研究解决一系列问题过程中的公司。
很多情况下,对于数据分析师而言最具有意义,最具有无限想象空间的职场机会往往没有得到重视,甚至于他们都不曾意识到手头上的某个工作是有史以来最难得的重大机遇。而选择一个公司,就是要让「承担风险」成为一种被鼓励,值得赞许的事情,去挑战某些基础的假设理论,去从数据层面释放更多的可能性。
那么究竟怎样才能筛选出这样一家公司来呢?其实观察一下工程技术部门与数据研究团队之间的合作关系就能搞清楚了。工程人员是否保持着高涨的热情与数据分析团队一共合作?是否不断地将实验,各种想法整合到产品当中?公司是否有一个基本的架构,能够支撑新概念,新技术的灵活整合?实际上,如果一个公司真的符合上面所描述的种种条件,其实「数据分析」和「工程技术」之间的界限已经模糊得消失不见了。
一个白手起家,闯入陌生领域的公司有可能没有非常稳定的公司组织结构,这固然让人觉得有点儿不靠谱,但是作为数据分析师来说,这个地方是充满最多创意性和自由的地方。在从来没有人涉足的领域去构建一些东西,这样性质的工作同样是可以评估测量的。不要光是看重设计中「数学」以及「统计」的地位,而且还要重视「数据通道」,「API」。
当然,渐进性的进步当然会带来渐进性的影响,但是如果你拥抱一次全新的机会,在空白领域,从无到有地开发出一个系统,并不断迭代提升,那么这个版本号为 1 的产品有可能成为这个领域的基础,借此深刻地影响整个行业。
最后的话
当然,还有其他需要考虑的因素:比如公司的品牌影响力,使用的是哪个具体的技术,具体到公司的同事都是怎样的,等等等等。所有这一切都同等重要。之所以摘出上面的三点内容,是因为它们往往不受人重视,不会经常出现在大家的视野中,但它们对于一名数据分析师职业发展,工作的快乐程度来说却具有决定性的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26