京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据对法律行业产生的影响
法律是传统手工色彩极其浓厚的行业,强调逻辑、思考、判断。但在互联网颠覆时代的大背景下,法律行业逐渐受到冲击并发生改变,“大数据”、“信息时代”、“互联网+”在法律行业内被不断提及,2015年《中华人民共和国国民经济和社会发展第十三个五年规划纲要》明确把大数据战略提升为国家战略,这些信息都在表明大数据势必会对传统法律行业的发展产生冲击。理脉团队结合国外法学评论和国内相关研究,就大数据可能对法律行业产生的影响展开分析:
律师和客户的关系悄然改变
在传统的律师和客户的关系中,律师通常处于主动地位,而客户相对被动。客户遇到法律问题需要求助律所或律师时,往往会因为缺乏选择参考而依照地域就近选择律所或律师,很多客户没有机会提前挑选法律服务机构,或只能在有限范围内去了解律师的执业水平。但在大数据时代下,每家律所和对应的律师都会有相应的评估报告,根据不同的评估报告,用户能根据自己的需求理性选择律所或律师。举例来讲,某家公司将一项业务交给10-20家律所去完成,根据后期回传的数据,用户能判断出在这项业务中每家律所对相似服务的不同报价,此项任务中律师和其助理分摊的任务比重,按小时计费合理还是按项目整个承包更划算,律所或律师在完成此项业务时额外费用产出的比较,这些内容都会成为客户之后选择合作伙伴的重要依据。
数据时代的到来,会让客户在选择律所或律师时,有更多的参考标准和依据,能在交互关系中占据更为主动的地位,而作为相对方的律师或律所则面临着新的挑战。
打破法律人传统的工作模式
《环球法律评论》专栏作家维克托对法律大数据下有这样的理解:“以一种前所未有的方式,通过对海量法律数据进行分析,对法律问题进行预判,获得巨大价值的产品和服务,或得出新的认知、深刻的观点和主张”。不同于传统的法律数字化资源,法律大数据意味着更大规模量级的数据量,更为重要的是法律大数据不仅是满足传统数据库所做的单纯的法律信息的汇总和整理,法律大数据更为核心的功能在于做出预测。经过海量的数据分析,形成对特定法律问题的裁判预测,进行同案类推,甚至对案件时长、难度、证据要求、胜诉概率、赔偿数额、量刑长短进行预判,推进人工智能发展,实现计算机的自我学习与完善。
这种模式下对律师或律所的利处在于法律大数据能帮助从业人员对案件进行科学合理的预判,甚至预估案件审理法官的裁判倾向,对法律适用做出贴近的分析,会从一定程度上节约法律实践成本。但是从更深层次的角度来看,大数据的普遍运用会对律师的工作带来更高的要求,律师被要求能从庞大的数据源中寻求精准的匹配信息,而用户出于对结果精确性的需要也会对律师提出更为苛刻的条件,除此之外,律师的职业一定程度上会被法律数据分析人员和法律数据服务提供商分化,这些可能出现的情况都是大数据对法律从业者提出的更高的要求。
牵一发而动全身
第一,法学研究模式范式转变。大数据的到来,可能加剧两种法学研究路径的分化,一种继续保持传统的法学教义分析方法,另一种实证研究路径可能加快转向大数据全样本的分析范式,而谁掌握大数据资源、大数据分析工具,则能快速占领实证法学研究的高地。数据的引入还可能改变传统法学研究单兵作战的模式,集团化或团队协作可能在不远的将来成为实证法学研究新模式,而资本可能进一步渗透这种法学研究模式,成为幕后组织运作的智库推动力。
第二,法律大数据可能带来一系列隐私权和其他法律问题。因为大数据在处理大量碎片化、弱相关的数据时,会产生镶嵌理论效应,即“信息拼版的价值高于其组成部分各自价值的总和”。2016年1月6日美国联邦贸易委员会发布了一份题为《大数据:包容工具抑或排斥工具》的研究报告,介绍了大数据的生命周期、大数据技术应用给消费者带来的利益和风险,探讨了应当如何利用大数据,使人们既能充分享受其给社会带来的利益,又能最小化其法律和道德风险。文章也在告诫我们:不能任由大数据运用在法外任性‘裸奔’,涉及个人隐私的法律保护必须提上议程,这是法律大数据在价值层面上的禁区。
第三,大数据和专业分析的结合将在数据时代发挥更大的作用。大数据提供参考依照,但不能解释因果关系。而在未来,客户的需求倾向于“数据+高质量分析报告”的结合.因此,在拥有海量数据后,对大数据背后含义的精准解读尤为关键。对法律数据行业来说,要同时注重数据和专业分析的提供,这样才能综合各种维度,对案件和相关领域做出尽可能准确的分析报告来更好地满足用户的需求。
我们处在一个“巨头齐聚、资本介入、民众法律意识不断提高的时代”,“大数据”与“互联网+”的结合能来领我们走向何处,值得深思。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22