
大数据对法律行业产生的影响
法律是传统手工色彩极其浓厚的行业,强调逻辑、思考、判断。但在互联网颠覆时代的大背景下,法律行业逐渐受到冲击并发生改变,“大数据”、“信息时代”、“互联网+”在法律行业内被不断提及,2015年《中华人民共和国国民经济和社会发展第十三个五年规划纲要》明确把大数据战略提升为国家战略,这些信息都在表明大数据势必会对传统法律行业的发展产生冲击。理脉团队结合国外法学评论和国内相关研究,就大数据可能对法律行业产生的影响展开分析:
律师和客户的关系悄然改变
在传统的律师和客户的关系中,律师通常处于主动地位,而客户相对被动。客户遇到法律问题需要求助律所或律师时,往往会因为缺乏选择参考而依照地域就近选择律所或律师,很多客户没有机会提前挑选法律服务机构,或只能在有限范围内去了解律师的执业水平。但在大数据时代下,每家律所和对应的律师都会有相应的评估报告,根据不同的评估报告,用户能根据自己的需求理性选择律所或律师。举例来讲,某家公司将一项业务交给10-20家律所去完成,根据后期回传的数据,用户能判断出在这项业务中每家律所对相似服务的不同报价,此项任务中律师和其助理分摊的任务比重,按小时计费合理还是按项目整个承包更划算,律所或律师在完成此项业务时额外费用产出的比较,这些内容都会成为客户之后选择合作伙伴的重要依据。
数据时代的到来,会让客户在选择律所或律师时,有更多的参考标准和依据,能在交互关系中占据更为主动的地位,而作为相对方的律师或律所则面临着新的挑战。
打破法律人传统的工作模式
《环球法律评论》专栏作家维克托对法律大数据下有这样的理解:“以一种前所未有的方式,通过对海量法律数据进行分析,对法律问题进行预判,获得巨大价值的产品和服务,或得出新的认知、深刻的观点和主张”。不同于传统的法律数字化资源,法律大数据意味着更大规模量级的数据量,更为重要的是法律大数据不仅是满足传统数据库所做的单纯的法律信息的汇总和整理,法律大数据更为核心的功能在于做出预测。经过海量的数据分析,形成对特定法律问题的裁判预测,进行同案类推,甚至对案件时长、难度、证据要求、胜诉概率、赔偿数额、量刑长短进行预判,推进人工智能发展,实现计算机的自我学习与完善。
这种模式下对律师或律所的利处在于法律大数据能帮助从业人员对案件进行科学合理的预判,甚至预估案件审理法官的裁判倾向,对法律适用做出贴近的分析,会从一定程度上节约法律实践成本。但是从更深层次的角度来看,大数据的普遍运用会对律师的工作带来更高的要求,律师被要求能从庞大的数据源中寻求精准的匹配信息,而用户出于对结果精确性的需要也会对律师提出更为苛刻的条件,除此之外,律师的职业一定程度上会被法律数据分析人员和法律数据服务提供商分化,这些可能出现的情况都是大数据对法律从业者提出的更高的要求。
牵一发而动全身
第一,法学研究模式范式转变。大数据的到来,可能加剧两种法学研究路径的分化,一种继续保持传统的法学教义分析方法,另一种实证研究路径可能加快转向大数据全样本的分析范式,而谁掌握大数据资源、大数据分析工具,则能快速占领实证法学研究的高地。数据的引入还可能改变传统法学研究单兵作战的模式,集团化或团队协作可能在不远的将来成为实证法学研究新模式,而资本可能进一步渗透这种法学研究模式,成为幕后组织运作的智库推动力。
第二,法律大数据可能带来一系列隐私权和其他法律问题。因为大数据在处理大量碎片化、弱相关的数据时,会产生镶嵌理论效应,即“信息拼版的价值高于其组成部分各自价值的总和”。2016年1月6日美国联邦贸易委员会发布了一份题为《大数据:包容工具抑或排斥工具》的研究报告,介绍了大数据的生命周期、大数据技术应用给消费者带来的利益和风险,探讨了应当如何利用大数据,使人们既能充分享受其给社会带来的利益,又能最小化其法律和道德风险。文章也在告诫我们:不能任由大数据运用在法外任性‘裸奔’,涉及个人隐私的法律保护必须提上议程,这是法律大数据在价值层面上的禁区。
第三,大数据和专业分析的结合将在数据时代发挥更大的作用。大数据提供参考依照,但不能解释因果关系。而在未来,客户的需求倾向于“数据+高质量分析报告”的结合.因此,在拥有海量数据后,对大数据背后含义的精准解读尤为关键。对法律数据行业来说,要同时注重数据和专业分析的提供,这样才能综合各种维度,对案件和相关领域做出尽可能准确的分析报告来更好地满足用户的需求。
我们处在一个“巨头齐聚、资本介入、民众法律意识不断提高的时代”,“大数据”与“互联网+”的结合能来领我们走向何处,值得深思。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02