
如何让大数据好看又实用
现如今,每个人都在谈论大数据,但很大程度上是由于其挥之不去的复杂性,故而,企业真正对于大数据的采用率仍然相对较低。事实上,在最近的一项针对大数据从业者的调查发现,只有百分之十三的企业对于大数据已经实现了全方位的应用。
这一比例无疑是非常小的。
Zoomdata 公司首席执行官Justin Langseth在接受采访时告诉我说,当谈到大数据时,其设计与性能其实同样重要。事实证明,“大”数据如若不能转化为“有用的”数据的话,也没有多大意义。
大数据的小成功
大数据革命最好的特点之一是其由于有了零成本的开源软件变得更强大。而商务智能一直受困于复杂而价格昂贵的软件,但在今天,最具创新性的大数据技术仅仅只需一个下载即可获得。
至少,理论上是这样的。
但在实践中,任何曾试图下载过Hadoop的人都可能会告诉你说,其是否奏效要“看人品”。当Cloudera的联合创始人迈克·奥尔森宣称,“在过去的十年里,没有任何一款占主导地位的平台级软件基础架构是在封闭源代码,专有的形式下兴起并发展起来的。”他是绝对正确的,包括像Hadoop,MongoDB,Spark及Cassandra等最佳的数据基础设施。
但占据主导并不一定意味着容易。
根据凯捷的一项调研显示,其受访者中,只有27%的受访者认为他们所在企业的大数据项目是“成功的”;而只有8%的受访者将其大数据项目描述为“非常成功”。即使有概念证明项目陷入困境,成功率也只有38%。
有些问题很难从人们所部署的技术中分离出来,包括“处理分散的筒仓数据,分析计划协调不力,缺乏清晰的商业案例以支撑大数据,以及依赖于传统遗留的系统来处理和分析大数据”。
但所有这些最终都将归结为将大数据的承诺转化为企业充分利用大数据分析技术能力的困难程度。
大数据的设计也是相当重要的。Langseth告诉我说,他在Zoomdata公司所雇用的首批员工之一,是来自纽约的著名爵士乐Blue Note Records唱片公司,且屡获殊荣的专辑封面设计师。(想象一下John Coltrane,Thelonious Monk,Sonny Rollins,等等的专辑封面均出自他们之手)。
是的,一名曾经的专辑封面设计师现在正在设计大数据系统——而在Zoomdata公司的大数据项目设计团队雇佣这种背景的设计师更多的是规则而不是例外。显然,Zoomdata公司有着其不同的大数据方法。当我问Langseth如何以简洁的观点来提炼这种以设计为中心的方法时,他说,这可以归结为三个主要方面:
1、自上而下的授权委任。首先,必须要有来自企业高层的授权委任,以推动建设一款以设计驱动的应用程序的任务。这对于企业技术来说是非常罕见的。
托尼·法戴尔,iPod的“设计之父”之一,就显示出了优秀的设计如何有助于消费类产品的原理,如苹果公司的iPod,及其后来加盟的Nest公司,乃至现在的谷歌。史蒂夫·乔布斯是苹果公司具有前瞻性的标志性的领导。而托尼曾在史蒂夫的领导下工作,并把这种观点带到了Nest公司,以及谷歌。
尽管这在面向消费者的技术领域获得了成功,但几乎没有经企业领导授权成功开发企业软件这方面的例子。这就是为什么大多数企业软件均不乐观的原因所在了。
2、设计人员占员工数量的比例。Langseth还强调,企业需要将以设计为中心的理念纳入到自己的招聘中。也就是说,企业必须让其UX设计师在开发人员中占据一定的比例,以便能够影响企业的以设计为中心的任务。
Zoomdata公司,旨为在让团队中开发人员与设计人员的比例达到5比1。而在大多数的企业软件公司,这一比例则接近50比1。所以这也可以说是大多数软件企业的用户体验是如此糟糕的一个主要的原因——包括大数据,这毕竟是一个开发人员所推动的趋势。
3、定期让普通员工参与测试。Langseth的第三条建议是,整个UX团队必须定期让一般的普通员工参与进来,而不仅进只是让分析专家执行可用性测试。极客们固然非常擅长开发软件,但这真正关系到的是企业的项目运行,所以必须让主流用户能够充分理解并领会。
Langseth指出:
这能够使我们的应用程序更易于为大街上任何一个普通人随意使用,他们可能熟悉诸如Excel等软件,但可能并不是一位商务智能分析专员。从战略的角度来看,这让我们的应用程序能够面临更广泛的受众,而不仅仅只是关注于少数专家。
这是至关重要的。最终,大数据必须要当它能够适用于所有形式时才是真正可用的。数据专家Peter Goldmacher在一点年前就提出这样的观点。他说,在大数据领域,最大赢家是那些构建了易于使用的应用程序的企业。
设计人员也是开发人员
同时,企业需要了解开发人员毕竟比不上最优秀的设计师,Zoomdata希望公司的设计师了解如何编程。Langseth坚持认为,“所有的优秀的艺术家和设计师均要熟悉他们向外界传达艺术的媒介。举例来说,一个好画家肯定会自己调配颜料,并自己建画布。”
这意味着,她/他知道自己向外界传达艺术的媒介的局限性在哪里,以及如何更好的表达艺术。Zoomdata并不希望自己的设计师与开发人员不能很好的沟通,所以他们必须熟悉代码。
为我们其余的人设计
同样重要的是,使用程序语言运行大量的研究测试。Langseth建议,关键的一点在于“一定要避免在其中使用特定行业的专业术语,诸如Hive或Pig的细微差别?”千万不要!大数据项目的最终目标是成为民主化企业的数据资产,这意味着其必须为那些一般性的员工使用,而非核心数据科学家或分析师。
这应该是其最终的落脚点。大数据想要真正获得长足发展,就需要成为不仅仅只是数据科学家的工具。Gartner分析师Svetlana Sicular指出,“要让学习Hadoop比学习公司的业务更容易。”
至少,其应该是这样。但问题在于企业需要的是那些学会了Hadoop的人能够将其翻译成企业一般员工熟悉的业务语言。微软正在试图做到这一点,就像Zoomdata正在试图将非结构化数据从NoSQL数据库、Hadoop等等提取出来一样。
虽然大数据项目的设计并不是实现这一目标的唯一因素,但这其也是相当关键的组成部分,而大多数企业忽视了这一重要组成部分。这也可以说是大数据项目不断失败的一大原因。为了将大数据项目做到更好。专注于大数据的设计,可以提供帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28