
大数据能力?不是你想说有就能有
2016年可谓是中国的“大数据之年”,不仅国家推行“大数据战略”,倡导发展互联网新经济,各行各业也都在谈论大数据的前景。大数据一时成为了各大企业都争相推拥的热词。
单纯从字面理解,大数据描述的是一个巨量数据的概念。而在实际的应用上,“大数据”更类似“光年”一样,当光指引到时间中,就成为了描述距离的单位,而把海量的有效数据进行有针对性的整合分析时,他就可以对用户行为进行描述,为我们的生活提供各种各样的决策和指引。
随着国家大数据战略的推行,“数聚”、“精准”等概念纷纷涌现。然而,在各大品牌层出不穷的新玩法下,“大数据”概念被滥用的情况越来越严重。笔者之见,“大数据”能力需要有漫长积蓄过程,绝非“想用就能用”。
在品牌宣传上,大数据的概念常常被有意无意地偷换,主要表现在,“有数据”并不等于大数据。大数据存在5V的特征,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)。除了存有数据的基本条件外,还需满足以上五个维度。因此,大数据是一个非常严格的概念。
一个企业的大数据实力如何,主要基于其拥有的数据资产的数量和质量,同时也取决于数据的维度,及对海量数据的开发运用能力(内部算法)。因此不少巨头在不断扩张自己数据库容量的同时,也在通过并购整合,拓宽其自身数据资产的覆盖度和完整度,同时提升自己对数据的运算能力。
以阿里巴巴为例,阿里拥有庞大的用户群体以及十多年的用户数据积累。其大数据资产,无论从数量还是质量上,在中国处于绝对领先地位。但究其根本,其主要数据维度主要集中在电商领域。随着阿里巴巴不断的跨领域扩张,其大数据维度也随之丰富起来。UC浏览器、高德地图、优酷土豆、新浪微博等多个领域产品的加入,阿里大数据基于移动信息领域的矩阵逐渐扩展。截至目前,据不完全统计,阿里大数据矩阵至少包含了电商、阅读、社交、搜索、地图、视频、应用、游戏等维度的用户行为数据,从覆盖率和完整度上,应该是目前BAT三大巨头中最具优势的。
然而,企业收集到“多维度”的数据只是第一步,如何运用、创造价值是接下来面临的考验。在数据价值的“落地”上,各个企业也正在积极探索。
移动互联时代深受“信息过载”的诟病,“如何实现信息与人更为精准的连接”是整个行业未来探索的方向。为了能够给用户提供最佳的内容获取决策,除了需要对数据宽度与厚度进行累积,还需要让数据变得更加“聪明”。通俗来讲,企业需要能够对用户产生的每个数据进行统计、分析与开发,并以此帮助用户做出决策。
以UC为例,从阿里大数据中的高德地图POI数据可以知道用户当下处于的特定场景,根据对“时间+地点”的描述分发用户当下最需要的资讯;此外,在淘宝、神马搜索、优酷等多维数据的互通下,可以知道用户对不同类型资讯的需求。此外,UC的算法还能实现根据不同领域按权重绘画属于该用户的用户画像,在基本的人群聚类下再继续进行需求分层。
以上用户数据的分析及处理,将形成个人定制化数据库,之后,再根据算法进行精准推送,目前常用的推荐算法有三种:
第一代基于“协同过滤”,即收集大量的用户浏览记录,通过相似行为进行关联推荐。由于算法简介,逻辑清晰,可行性强,这种算法被大多数企业采用,例如今日头条、天天快报等都是采用的这种算法,但其也存在缺陷。由于获取数据的手段有限,数据不能够真实的反应出用户对信息的需求,很容易让用户深陷在自己的“兴趣爱好”当中;
第二代基于“搜索”,在分析了用户的核心兴趣点之后,通过隐式搜索的方式,给用户结果,这是在搜索引擎全面普及后出现的数据算法。但是与第一代算法类似的是,不同的人搜索相同的信息有不同的目的,而不同的时间地点搜同样的信息也有不同的目的,用同样的标准衡量用户行为,容易产生误判;好处是,对第一代算法所产生的“信息孤岛”效应有了较大的减弱,较容易形成兴趣圈群。在这方面做得比较好的是一点资讯。
第三代基于“社群+场景”,从“人”的角度,切入到具体的社群,实现“人以群分”;从内容的角度,切入到具体场景,这也是目前算法的发展趋势,比较典型的是以阿里大数据矩阵为依托的UC头条。
不过,就目前而言,实现“社群+场景”精准分发还处于一个比较理想的阶段,体现在“社群+场景”有一系列苛刻的要求,基础要满足的就是精准的用户画像绘制。眼下有此能力的恐怕也只有BAT三家。
当然,一个行业的成功除了能够给用户带来改变,自身还应具备优秀的商业化能力,以实现行业的可持续发展。Facebook、Twitter等企业对大数据在信息流里的商业模式早有示范。其中,Facebook移动广告营收公司总营收的82%(2016年Q1财报),是基于大数据的精准定向广告流为收入带来快速增长。而这种模式能够适用并持续增长,其主要原因是B端与C端的互利,B端的广告在更为精准、高效推送到用户外,C端获取了精准的信息,不会影响用户体验。
如以上所列举的“在高德地图里形成固定的商圈,在UC头条相应商圈的资讯就会推送给你”,这样一次信息与人的精准连接,对用户来说,带来是获取价值信息时间成本的缩小;对内容提供者来说,是潜在受众价值的挖掘;而对广告主而言,是高效、精准传递受众的价值实现。在这里面,满足的是消费测、供给侧、商业测三方需求。
大数据时代不止于“大”,企业对数据资产的厚度与深度的积累成为了决定大数据成败的关键,在大数据被日益滥用的今天,笔者更希望在时代大趋势下,大数据能真正落地,至少不止一个阿里巴巴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29