
解析spss常用程序
1、读入数据的程序:
DATA LIST LIST
/id (F3) Interview_date (ADATE10) Age (F3) Gender (A1)
Income_category (F1) Religion (F1) opinion1 to opinion4 (4F1).
解释:要读入数据的变量,例如:id为变量名,后面的(F3)表示数字型的程度为3(可根据需要设计),依次类推A1表示字符的长度为1
BEGIN DATA(开始读入数据)
150 11/1/2002 55 m 3 4 5 1 3 1
272 10/24/02 25 f 3 9 2 3 4 3
299 10-24-02 900 f 8 4 2 9 3 4
227 10/29/2002 62 m 9 4 2 3 5 3
216 10/26/2002 39 F 7 3 9 3 2 1
228 10/30/2002 24 f 4 2 3 5 1 5
333 10/29/2002 30 m 2 3 5 1 2 3
385 10/24/2002 23 m 4 4 3 3 9 2
170 10/21/2002 29 f 4 2 2 2 2 5
391 10/21/2002 58 m 1 3 5 1 5 3
END DATA.(结束读入)
2、对变量添加名称(简单的说就是数据库中变量的意思是什么?)
VARIABLE LABELS
Interview_date "Interview date"
Income_category "Income category"
opinion1 "Would buy this product"
opinion2 "Would recommend this product to others"
opinion3 "Price is reasonable"
opinion4 "Better than a poke in the eye with a sharp stick".
解析:
VARIABLE LABELS
变量名( Interview_date ) 要赋予的变量名称(Interview date)
3、为变量中的数值添加lable
VALUE LABELS
Gender "m" "Male" "f" "Female"(对字符型赋值)
/Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"
7 "Refused to answer" 8 "Don't know" 9 "No answer"
/Religion 1 "Catholic" 2 "Protestant" 3 "Jewish" 4 "Other" 9 "No answer"
/opinion1 TO opinion4 1 "Strongly Disagree" 2 "Disagree" 3 "Ambivalent"
4 "Agree" 5 "Strongly Agree" 9 "No answer".
解析:
VALUE LABELS
Gender "m" "Male" "f" "Female"(对字符型赋值Gernder表示要赋值的变量名,比如运行以后表示“F”代表female,“M”表示Male)
数据型的:Income_category 1 "Under 25K" 2 "25K to 49K" 3 "50K to 74K" 4 "75K+"(对数值型赋值,Income_category 表示要赋值的变量名,比如运行以后表示1代表Under 25K,2表示25K to 49K,依次类推)
4、缺失值处理:
MISSING VALUES
Income_category (7, 8, 9)
Religion opinion1 TO opinion4 (9).
解析:MISSING VALUES Income_category (7, 8, 9)(表示将Income_category变量中的7\8\9认为是缺失值,可根据自己的目的处理,自行修改)
5、修改变量的类型:
VARIABLE LEVEL
Income_category, opinion1 to opinion4 (ORDINAL)
Religion (NOMINAL).
6、检查
DISPLAY DICTIONARY.(运行即可,看见数据库的所有信息)
解析:VARIABLE LEVEL Income_category, opinion1 to opinion4 (ORDINAL)(表示把Income_category,opinion1 to opinion4的变量改为定序变量)可根据分析的进行修改
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18