京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据能帮你赚钱吗
随着网络技术的飞速发展,大数据已经不是一个新鲜词。国务院常务会议也通过了《关于促进大数据发展的行动纲要》,强调顺应潮流引导支持大数据产业发展。大数据正在成为促进创业创新的新动力。到现在,大数据早已脱离概念层面,在股票投资中发挥着实际的作用。这种作用不容小觑。
金融大数据的意义在于从海量的数据中即时识别和获取信息价值,从而得到理性判断和合理选择。这对于众多金融机构来说简直太重要了,海量数据不是几个研究员就能完成的,必须依靠电脑和网络,依靠程序的运算归纳。
机构有雄厚的实力来完成这一切,因为大数据的采集和分析是高成本的,往往有一些专门的机构在完成,然后将产品销售给别的机构,一般普通投资者不会选择去消费这样的产品,那散户可以通过怎样的方式来拥抱大数据呢?
比起在市场上追捧“大数据概念股”,我想更多的投资者希望能弄清楚,自己如何运用大数据,从而让自己的投资如虎添翼。
我总结了一下,目前大概有三种方式。
第一种,就是免费信息的运用。网络搜索是大家几乎每天都在使用的网络工具。其实,你自己的搜索过程也是大数据信息的一部分。比如你搜某个关键词,就会被相关的大数据统计采集并分析。举个例,前段时间一家网站发布的数据报告分析,发现在股市暴跌时,网民最关注的是——娱乐大明星。反推一下,从这些数据中就可以发现市场运行的阶段。其实各大搜索网站都有类似的榜单排行,比如板块热点排行、最受关注的公司的排行、股市热词排行、最受关注的理财产品等等。从这些免费信息中,细心的投资者或许能发现自己需要的信息,来帮助投资决策。
以上我说的大数据运用,需要投资者具备一定的分析研究能力。那如果没时间去分析这么多的数据内容,又或者不具备这样的研究能力,怎么办?散户大数据应用还有两种方法。
一个就是相关炒股手机应用,这一块还处于刚刚勃兴的阶段,但业内几乎在短时间内迅速就其产品模式达成了共识——将交易与交流相结合,组建日常化的
投资社区。如何简单的理解这个概念呢?那就是——“跟着高手炒股”。怎么实现的呢,比如有的手机应用是这样做的:要求会员投资者都必须公布自己的投资记录,形成交易数据公开,通过一定时间内的收益排名数据比较,自动推出“股票高手”,允许用户跟着高手投资。一旦关注某个高手后,平台会自动向投资者发送该高手仓位实时变化消息。这样即使是不会炒股,跟着别人做也有可能获利。
当然,也有很多手机应用号称了使用大数据分析来推荐热点板块和个股的,有的是免费使用,也有的收费。现在,不同背景与定位的炒股应用都开始探索各自的商业模式,谋求符合自己的生存之道。投资者可以在这其中做一些了解和选择。
即使是这样,那也是投资者自己是最后的决策者和操作者,其他的大数据信息都只是参考。如果想当甩手掌柜,完全交由别人来操作。还可以选择那些打出“大数据”旗帜的基金。目前市场上正在运行的大数据基金只有几只,其基本的特点就是,依托于庞大的网络搜索、网络消费和社交平台等数据,在选股策略上可能更有针对性。其收益率,大家可以去比较一下,自行选择。
总的来说,大数据时代催生出的不仅是股票交易平台的变化,更是股票交易手段、选股策略的优化升级。
大数据分析运用到金融投资上,其主要作用就是预测。通过预测来提前进入到价值洼地,获取更丰厚的投资收益。
不过,即使是无限接近真相的预测也只是预测。
而且,预测有准的时候,也会有不准的时候。
“股市有风险,投资需谨慎。”这句话在任何时候都适用。也是大家在利用大数据炒股时应该谨记的一句箴言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26