
大数据能帮你赚钱吗
随着网络技术的飞速发展,大数据已经不是一个新鲜词。国务院常务会议也通过了《关于促进大数据发展的行动纲要》,强调顺应潮流引导支持大数据产业发展。大数据正在成为促进创业创新的新动力。到现在,大数据早已脱离概念层面,在股票投资中发挥着实际的作用。这种作用不容小觑。
金融大数据的意义在于从海量的数据中即时识别和获取信息价值,从而得到理性判断和合理选择。这对于众多金融机构来说简直太重要了,海量数据不是几个研究员就能完成的,必须依靠电脑和网络,依靠程序的运算归纳。
机构有雄厚的实力来完成这一切,因为大数据的采集和分析是高成本的,往往有一些专门的机构在完成,然后将产品销售给别的机构,一般普通投资者不会选择去消费这样的产品,那散户可以通过怎样的方式来拥抱大数据呢?
比起在市场上追捧“大数据概念股”,我想更多的投资者希望能弄清楚,自己如何运用大数据,从而让自己的投资如虎添翼。
我总结了一下,目前大概有三种方式。
第一种,就是免费信息的运用。网络搜索是大家几乎每天都在使用的网络工具。其实,你自己的搜索过程也是大数据信息的一部分。比如你搜某个关键词,就会被相关的大数据统计采集并分析。举个例,前段时间一家网站发布的数据报告分析,发现在股市暴跌时,网民最关注的是——娱乐大明星。反推一下,从这些数据中就可以发现市场运行的阶段。其实各大搜索网站都有类似的榜单排行,比如板块热点排行、最受关注的公司的排行、股市热词排行、最受关注的理财产品等等。从这些免费信息中,细心的投资者或许能发现自己需要的信息,来帮助投资决策。
以上我说的大数据运用,需要投资者具备一定的分析研究能力。那如果没时间去分析这么多的数据内容,又或者不具备这样的研究能力,怎么办?散户大数据应用还有两种方法。
一个就是相关炒股手机应用,这一块还处于刚刚勃兴的阶段,但业内几乎在短时间内迅速就其产品模式达成了共识——将交易与交流相结合,组建日常化的
投资社区。如何简单的理解这个概念呢?那就是——“跟着高手炒股”。怎么实现的呢,比如有的手机应用是这样做的:要求会员投资者都必须公布自己的投资记录,形成交易数据公开,通过一定时间内的收益排名数据比较,自动推出“股票高手”,允许用户跟着高手投资。一旦关注某个高手后,平台会自动向投资者发送该高手仓位实时变化消息。这样即使是不会炒股,跟着别人做也有可能获利。
当然,也有很多手机应用号称了使用大数据分析来推荐热点板块和个股的,有的是免费使用,也有的收费。现在,不同背景与定位的炒股应用都开始探索各自的商业模式,谋求符合自己的生存之道。投资者可以在这其中做一些了解和选择。
即使是这样,那也是投资者自己是最后的决策者和操作者,其他的大数据信息都只是参考。如果想当甩手掌柜,完全交由别人来操作。还可以选择那些打出“大数据”旗帜的基金。目前市场上正在运行的大数据基金只有几只,其基本的特点就是,依托于庞大的网络搜索、网络消费和社交平台等数据,在选股策略上可能更有针对性。其收益率,大家可以去比较一下,自行选择。
总的来说,大数据时代催生出的不仅是股票交易平台的变化,更是股票交易手段、选股策略的优化升级。
大数据分析运用到金融投资上,其主要作用就是预测。通过预测来提前进入到价值洼地,获取更丰厚的投资收益。
不过,即使是无限接近真相的预测也只是预测。
而且,预测有准的时候,也会有不准的时候。
“股市有风险,投资需谨慎。”这句话在任何时候都适用。也是大家在利用大数据炒股时应该谨记的一句箴言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08