
5个分析维度,轻松搞定App数据分析
基础指标
1、用户:总用户数、新用户数、留存用户、转化率、地域分析;
2、活跃:日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
3、营收:付费人数、付费率、付费点分布;
4、应用:启动次数、使用频率、使用时长、使用间隔、版本分布、终端类型、错误分析;
5、功能:功能活跃、页面访问路径、核心动作的转化率;
●分析维度
你赚钱的方式决定了你应该关注的指标。从长远来讲,企业风险最高的部分往往是与其如何赚钱直接相关的。基于以上的基础数据指标,结合数据分析的两点事实,可以选取所需的指标,完成APP数据分析:
1.用户分析
分析用户属性为产品改进及推广提供充分、可靠的数据制定精准的策略;
1.1用户规模
基础指标:总用户数、新增用户、流失用户、回流用户;
统计维度:按年、月、周、曰;
指标比例:统一使用”率“表示;
指标说明:苹果端很难取值,可以间接地转化;以激活APP量代替下载量;安卓比较好处理;日月周维度;新增用户/总用户数,说明产品健康度;比值的大小都有影响说明问题;
1.2活跃用户_用户质量
基础指标:日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
统计维度:按日、周、月,按渠道,按分群;
指标比例:统一使用”率“表示;
指标说明:日、周、月,统计维度依据产品类型/属性而选取;提高这些指标的方式:采取运营活动,推送,签到,任务,积分;以功能和内容驱动,用户APP的使用频率;
1.3用户构成
基础指标:活跃用户、启动次数;
统计维度:按年、月、周、曰;
a. 本周回流用户:上周未启动过应用,本周启动应用的活跃用户;
b. 连续活跃n周用户:连续n周,每周至少启动过一次应用的活跃用户(第n+1未启动)
c. 忠诚用户:连续活跃n周及以上的用户;
d. 连续活跃用户:连续活跃2周以上的的用户;
e. 近期流失用户:连续n周没有启动过应用的用户(第n+1周启动过);
f. 周活跃用户:当周启动过应用的用户(去重);
指标比例:统一使用”率“表示;绝对值——展示的是个用户成分的数量,百分比展示的是活跃用户 成分占周或曰用户的比例;对周活跃用户数据进行的成分分解,并通过历史数据预测未来数据变化趋势的模型。该模 型帮助您对应用后续的用户活跃和留存等进行科学预测,并制定有效的规划和目标;
2.应用分析
2.1启动次数
基础指标:总用户数、新增用户、流失用户、回流用户;
统计维度:按月、周或曰,按渠道,按分群;
指标比例:某日/周/月的启动次数占所选时段总启动次数的比例;
指标说明:打开应用视为启动,完全退出或退至后台即视为启动结束;
2.2版本分布
基础指标:启动次数、新增用户、活跃用户、升级用户;
统计维度:按时间、版本;
指标比例:统一使用”率“表示;不同版本的累计用户(占累计用户全体的比例);
指标说明:展示累计用户排名前10的各个版本变化趋势,可以帮助了解每个版本的新增用户,最新版本的升级情况,目前的哪些版本状况;
2.3使用状况
基础指标:使用时长、使用频次、使用间隔;
统计维度:日、周、月;版本、渠道、时间段;
指标比例:某日/周/月的启动次数占所选时段总启动次数的比例;
指标说明:统计周期内,一次启动的使用时长;一天内启动应用的次数;
用统一用户相邻两次启动间隔的时间长度。
2.4终端类型、错误分析(不做详细介绍)
3.功能分析
a. 功能活跃指标:某个功能的活跃用户,使用量情况;功能验证;对产品功能的数据分析,确保功能的取舍的合理性,
b. 页面访问路径:用户从打开到离开应用整个过程中每一步骤的页面访问、跳转情况。页面访问路径是全量统计。通过路径分析得出用户类型的多样、用户使用产品目的的多样性,还原用户目的;通过路径分析,做用户细分;再通过用户细分,返回到产品的迭代。
c. 漏斗模型:整个漏斗所关心的最终转化率的目标是序列中最后一个事件。用户转化率的分析,核心考察漏斗每一层的流失原因的分析。通过设置自定义事件以及漏斗来关注应用内每一步的转化率,以及转化率对收入水平的影响。通过分析事件和漏斗数据,可以针对性的优化转化率低的步骤,切实提高整体转化水平。
4.行业分析
指标说明:行业数据可以帮助了解行业内应用的整体水平,可以查看应用的全体应用或同类应用中各个 指标的数据、排名及趋势,有助于衡量应用的质量和表现;
统计维度:用户规模、更新频次、应用排名;
指标比例:全体排名和同规模排名;
了解行业数据,可以知道自己的APP在整个行业的水平,可以从新增用户、活跃用户、启动次数、使用时长等多个维度去对比自己产品与行业平均水平的差异以及自己产品的对应的指标在整个行业的排名,从而知道自己产品的不足之处。
5.渠道分析
指标说明:渠道质量的评估,不同渠道获得用户的行为特征监控、判断问题;
统计维度:时间段、不同渠道对比;基础对比(新增用户、新增账号、活跃用户、活跃账号、启动次数、单次使用时长、次日留存率);
可以从多个维度的数据来对比不同渠道的效果,比如从新增用户、活跃用户、次日留存率、单次使用时长等角度对比不同来源的用户,这样就可以根据数据找到最适合自身的渠道,从而获得最好的推广效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15