京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“吃货大数据”最全消费群体数据分析来了
从古至今,中国人对吃的追求便远远高于对'穿住行'的要求,以诗人苏东坡为例,他之所以被称为美食家(换种说法则是吃货、吃虫),正是因为每到一地就充分发挥就地取材的牛逼精神,从临界长江的黄州'东坡肉'到海南苏东坡之子苏过创作的'玉糁羹',真正做到了从北吃到南,扫荡天下美食的气势。
而中国饮食文化博大精深,除了跑遍全国品尝各地特色美食之外,能在本地城市就能吃遍全国美食精华才是吃货的终极梦想。
然而对于资深吃货最苦恼之事莫过于听闻一家评价颇高的餐厅,欣然赴会却发现食之乏味,高评价是刷榜、水军所得;亦或是熟悉的美食吃了千百遍,遍寻不到填补新鲜感、值得尝试的新餐厅,导致吃货再也不吃了。
“O2O时代的吃货力量”餐饮消费大数据新鲜出炉,报告显示了在生活服务O2O快速发展并逐渐回归理性的当下,餐饮O2O消费的新趋势。
女性吃货“碾压”男性
数据显示,男女餐饮消费比例为69.39%:30.61%,近70%的餐饮消费由女性贡献。
餐饮消费额前5%的用户中,也有近7成是女性,女性成为餐饮O2O领域的消费主力。
年轻人是餐饮消费主力军
58%的餐饮消费由25-34岁的青年消费者贡献,85%的餐饮消费由18-34岁的年轻消费者贡献。
餐饮消费额前5%的用户,65%为25-34岁的消费者。
从饭点看出不同城市的生活节奏
哈尔滨、青岛最悠闲:38.33%的哈尔冰消费者晚饭时间在18:00之前,31.53%的青岛消费者晚饭时间在18:00之前。
广深最疯狂:39.28%的深圳消费者晚饭时间在20:00之后,37.67%的广州消费者晚饭时间在20:00之后。
其中,帝都有31.79%的消费者晚饭时间在20:00之后。
北京不同地区饭点差异明显
北京:密云延庆最悠闲 建外大街忙过五道口
在20:00之后吃晚餐 朝阳东城平均30.81%
在18:00之前吃晚餐 密云延庆平均38.9%
跟老板说声“辛苦了”
20:00之后用晚餐的职业人群中,企业主和高层管理者吃得最晚,个体经营者时间最自由
贵阳盛产“土豪吃货”
餐饮平均客单价TOP5城市中,贵阳位列第一,一线城市仅上海、北京入围TOP5。
同一城市不同地区的客单价格差异明显:客单价最高的贵阳小河区是北京最高客单价西城区的2倍!
什么才是你的菜?
不同城市消费者钟爱的餐饮品类差异明显,折射出不同的城市文化。
上海整体更偏西化;
北京则是更加倾向于传统国人口味;
广州没有明显的倾向,更加多元化。
城市特色更吸引游客
全聚德名声在外:89.2%的消费者为外地游客;
北京本地人更青睐东来顺:41.74%的消费者为本地消费者;
做餐饮生意最怕心里没底,顾客的喜好、消费力、就餐原因、口味、接受能力等就是造成餐饮老板心里没底的因素,如果想了解顾客的需求,必然要做好市场调查。不过这些我们已经为你做了,各位餐饮老板可从以下数据看出餐饮消费者的需求。
Tips 1:工作以外的时间,朋友聚餐是最主要的消费行为。讲求实惠,轻松而有趣的氛围是朋友聚餐的首选佳地。每日12点和18点左右分别是午晚餐就餐高峰期,餐厅常常出现排队情况,而在餐点前后时段则经常坐不满。为使上座率最大化,餐厅可以根据不同时间段给予到店客人不同优惠。譬如如果在13-14点到店就餐,客人可享9折优惠;14--15点到店就餐可享8折优惠,以此类推。此外,在线订座高峰期比较集中在就餐前1--2小时。
Tips 2:餐饮业主力消费为上班族,营业者需提高上菜速度。飞速发展的社会使人的生活节奏越来越快,如何在食客的耐心时间内奉上美味佳肴,依旧是最大的话题。标准化的实现使食材前期处理的时间得以控制,若无法达到上菜的黄金时间(20分钟内),设计等待时间的小环节,降低食客的耐心也是个不错的方法。
Tips 3:口味与氛围是最食客最为关心的就餐因素,无疑味道是最为核心的竞争力。口碑、服务以及安全卫生是检验餐厅长久性的软性旗帜。
数据并不是市场的唯一指标,但我们可以通过数据得知市场的方向。无论是作为餐饮从业者还是餐饮爱好者,都可从中得到不少启发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16