京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何成为一名数据科学家并得到一份工作
大数据科学家被认为是21世纪最性感的职业,且未来薪水优渥。其工资高达10万美金每年,而市场对最优秀的数据科学家的需求正强劲。另一方面,很多20世纪流行的工作将会因为机器人,人工智能和机器学习的发展而消失。那么,如何做才能确保自己得到这份性感的工作,成为一名数据科学家并被雇佣呢?
出人意料的是,一切都是从获得正确的技能开始。成为一名数据科学家的挑战在于,你需要掌握一长串技能来确保自己得到一份工作。前些时候,我发表了一篇文章,描述了大数据科学家的典型职业要求,同时其他的图表也表明,成为一名大数据科学家,有很长的路要走。但是,至2020年时,英国将有56000名大数据科学家缺口,美国将有14万至19万缺口,成为一名大数据科学家无疑是值得追求的。
能够选择正确的技术
一个数据科学家应该能够在不同数据源中成千上万的数据点中发现规律,并能够从那些可用于制定决策的规律中得出洞见。数据科学家应当能够发现可以促使优化这些洞见的关键条件,比如一个工厂中的传感器数据或者识别零售行业中的客户行为因果关系。基于这些要求,数据科学家应当能够选择最优的工具和技术来得到最好的结果。所以,大数据科学家应当能够明智地从一堆技术中选出可以最优化结果的方法,而不是仅仅知道很多不同的技术方法。
理解商业背景
当然,要选择正确的技术方法需要对具体行业有了解,并且更重要的是,要能正确理解商业背景。在一个数据科学家一头扎进数据的海洋之前,他或她应当明确理解数据应用的背景并深刻理解眼前的问题。要做到这一点,最好的办法是和商业伙伴进行合作,向他们提问来弄清楚问题背景,以便彻底明白需要做什么。所以一个数据科学家也需要对商业模式是如何运作的有一些了解,了解到什么程度取决于公司和行业的规模。
不同的行业有不同的问题,不同的问题要求不同的解决办法。为了在某一具体行业找到一份工作,你需要对这个行业有一些认知,来帮助你更好的理解商业背景。对商业背景更深入地了解可以促使你形成更优的洞见。
通过项目来获得工作经验
对于初入职场的数据科学家来说,特别是有雄心壮志的人,他们需要有处理不同来源数据和解决各种各样问题的经验。尽管大数据科学家人才短缺,如果想得到这份工作的话,展示相关经验仍然是十分重要的。当然,有一点儿经验听起来很容易办到,但是做过越多不同的项目,你才能掌握更多的技能并且更好的理解不同的商业模式。诸如由哈佛创新实验室开发的Kaggle和Experfy这样的网站,能够帮你获得相关经验并助你得到最喜欢的公司的理想工作。
给组织机构的福利:雇佣合适数据科学家的建议
对于各种组织机构来说,雇佣到合适的数据科学家也是一个挑战。在此我给出三点相关建议:
由于人才短缺,最合适的数据科学家现在可能并没出现。掌握不同技术的顶尖数据科学家甚至根本不存在。所以如果你想开展大数据战略,找一个既有行业知识又有基本数据分析技能的专业人士吧。以此为起点,这个数据科学家也可以从工作中学习和提升技能。
合适的数据科学家可能远在千里之外。要么你可以等待这种局面的改变(有数据科学家搬到单位所在城市),要么你可以试着让你看中的人才搬到单位附近或者开展远程办公。数据分析活动可以远程开展,而通过视频会议,你们仍可以进行合作。
培训现有职员并让他们互相学习。你可以看看是否可以培训现有雇员并让他们提升技能,而非雇佣一个昂贵的数据科学家。甚至可能你已经雇了一个数据科学家而你自己都不知道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01