京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何成为一名数据科学家并得到一份工作
大数据科学家被认为是21世纪最性感的职业,且未来薪水优渥。其工资高达10万美金每年,而市场对最优秀的数据科学家的需求正强劲。另一方面,很多20世纪流行的工作将会因为机器人,人工智能和机器学习的发展而消失。那么,如何做才能确保自己得到这份性感的工作,成为一名数据科学家并被雇佣呢?
出人意料的是,一切都是从获得正确的技能开始。成为一名数据科学家的挑战在于,你需要掌握一长串技能来确保自己得到一份工作。前些时候,我发表了一篇文章,描述了大数据科学家的典型职业要求,同时其他的图表也表明,成为一名大数据科学家,有很长的路要走。但是,至2020年时,英国将有56000名大数据科学家缺口,美国将有14万至19万缺口,成为一名大数据科学家无疑是值得追求的。
能够选择正确的技术
一个数据科学家应该能够在不同数据源中成千上万的数据点中发现规律,并能够从那些可用于制定决策的规律中得出洞见。数据科学家应当能够发现可以促使优化这些洞见的关键条件,比如一个工厂中的传感器数据或者识别零售行业中的客户行为因果关系。基于这些要求,数据科学家应当能够选择最优的工具和技术来得到最好的结果。所以,大数据科学家应当能够明智地从一堆技术中选出可以最优化结果的方法,而不是仅仅知道很多不同的技术方法。
理解商业背景
当然,要选择正确的技术方法需要对具体行业有了解,并且更重要的是,要能正确理解商业背景。在一个数据科学家一头扎进数据的海洋之前,他或她应当明确理解数据应用的背景并深刻理解眼前的问题。要做到这一点,最好的办法是和商业伙伴进行合作,向他们提问来弄清楚问题背景,以便彻底明白需要做什么。所以一个数据科学家也需要对商业模式是如何运作的有一些了解,了解到什么程度取决于公司和行业的规模。
不同的行业有不同的问题,不同的问题要求不同的解决办法。为了在某一具体行业找到一份工作,你需要对这个行业有一些认知,来帮助你更好的理解商业背景。对商业背景更深入地了解可以促使你形成更优的洞见。
通过项目来获得工作经验
对于初入职场的数据科学家来说,特别是有雄心壮志的人,他们需要有处理不同来源数据和解决各种各样问题的经验。尽管大数据科学家人才短缺,如果想得到这份工作的话,展示相关经验仍然是十分重要的。当然,有一点儿经验听起来很容易办到,但是做过越多不同的项目,你才能掌握更多的技能并且更好的理解不同的商业模式。诸如由哈佛创新实验室开发的Kaggle和Experfy这样的网站,能够帮你获得相关经验并助你得到最喜欢的公司的理想工作。
给组织机构的福利:雇佣合适数据科学家的建议
对于各种组织机构来说,雇佣到合适的数据科学家也是一个挑战。在此我给出三点相关建议:
由于人才短缺,最合适的数据科学家现在可能并没出现。掌握不同技术的顶尖数据科学家甚至根本不存在。所以如果你想开展大数据战略,找一个既有行业知识又有基本数据分析技能的专业人士吧。以此为起点,这个数据科学家也可以从工作中学习和提升技能。
合适的数据科学家可能远在千里之外。要么你可以等待这种局面的改变(有数据科学家搬到单位所在城市),要么你可以试着让你看中的人才搬到单位附近或者开展远程办公。数据分析活动可以远程开展,而通过视频会议,你们仍可以进行合作。
培训现有职员并让他们互相学习。你可以看看是否可以培训现有雇员并让他们提升技能,而非雇佣一个昂贵的数据科学家。甚至可能你已经雇了一个数据科学家而你自己都不知道。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22