
1、线性回归
线性回归就是使用下面的预测函数预测未来观测量:
其中,x1,x2,...,xk都是预测变量(影响预测的因素),y是需要预测的目标变量(被预测变量)。
线性回归模型的数据来源于澳大利亚的CPI数据,选取的是2008年到2011年的季度数据。
rep函数里面的第一个参数是向量的起始时间,从2008-2010,第二个参数表示向量里面的每个元素都被4个小时间段。
year <- rep(2008:2010, each=4)
quarter <- rep(1:4, 3)
cpi <- c(162.2, 164.6, 166.5, 166.0,
166.2, 167.0, 168.6, 169.5,
171.0, 172.1, 173.3, 174.0)
plot函数中axat=“n”表示横坐标刻度的标注是没有的
plot(cpi, xaxt="n", ylab="CPI", xlab="")
绘制横坐标轴
axis(1, labels=paste(year,quarter,sep="Q"), at=1:12, las=3)
接下来,观察CPI与其他变量例如‘year(年份)’和‘quarter(季度)’之间的相关关系。
cor(year,cpi)
cor(quarter,cpi)
输出如下:
cor(quarter,cpi)
[1] 0.3738028
cor(year,cpi)
[1] 0.9096316
cor(quarter,cpi)
[1] 0.3738028
由上图可知,CPI与年度之间的关系是正相关,并且非常紧密,相关系数接近1;而它与季度之间的相关系数大约为0.37,只是有着微弱的正相关,关系并不明显。
然后使用lm()函数建立一个线性回归模型,其中年份和季度为预测因素,CPI为预测目标。
建立模型fit
fit <- lm(cpi ~ year + quarter)
fit
输出结果如下:
Call:
lm(formula = cpi ~ year + quarter)
Coefficients:
(Intercept) year quarter
-7644.488 3.888 1.167
由上面的输出结果可以建立以下模型公式计算CPI:
其中,c0、c1和c2都是模型fit的参数分别是-7644.488、3.888和1.167。因此2011年的CPI可以通过以下方式计算:
(cpi2011 <-fit$coefficients[[1]] + fit$coefficients[[2]]*2011 +
fit$coefficients[[3]]*(1:4))
输出的2011年的季度CPI数据分别是174.4417、175.6083、176.7750和177.9417。
模型的具体参数可以通过以下代码查看:
查看模型的属性
attributes(fit)
$names
[1] "coefficients" "residuals" "effects" "rank" "fitted.values"
[6] "assign" "qr" "df.residual" "xlevels" "call"
[11] "terms" "model"
$class
[1] "lm"
模型的参数
fit$coefficients
观测值与拟合的线性模型之间的误差,也称为残差
residuals(fit)
1 2 3 4 5 6 7
-0.57916667 0.65416667 1.38750000 -0.27916667 -0.46666667 -0.83333333 -0.40000000
8 9 10 11 12
-0.66666667 0.44583333 0.37916667 0.41250000 -0.05416667
除了将数据代入建立的预测模型公式中,还可以通过使用predict()预测未来的值。
输入预测时间
data2011 <- data.frame(year=2011, quarter=1:4)
cpi2011 <- predict(fit, newdata=data2011)
设置散点图上的观测值和预测值对应点的风格(颜色和形状)
style <- c(rep(1,12), rep(2,4))
plot(c(cpi, cpi2011), xaxt="n", ylab="CPI", xlab="", pch=style, col=style)
标签中sep参数设置年份与季度之间的间隔
axis(1, at=1:16, las=3,
labels=c(paste(year,quarter,sep="Q"), "2011Q1", "2011Q2", "2011Q3", "2011Q4"))
预测结果如下:
![]()
上图中红色的三角形就是预测值。
2、Logistic回归
Logistic回归是通过将数据拟合到一条线上并根据简历的曲线模型预测事件发生的概率。可以通过以下等式来建立一个Logistic回归模型:
其中,x1,x2,...,xk是预测因素,y是预测目标。令
,上面的等式被转换成:
使用函数glm()并设置响应变量(被解释变量)服从二项分布(family='binomial,'link='logit')建立Logistic回归模型,更多关于Logistic回归模型的内容可以通过以下链接查阅:
· R Data Analysis Examples - Logit Regression
· 《LogisticRegression (with R)》
3、广义线性模型
广义线性模型(generalizedlinear model, GLM)是简单最小二乘回归(OLS)的扩展,响应变量(即模型的因变量)可以是正整数或分类数据,其分布为某指数分布族。其次响应变量期望值的函数(连接函数)与预测变量之间的关系为线性关系。因此在进行GLM建模时,需要指定分布类型和连接函数。这个建立模型的分布参数包括binomaial(两项分布)、gaussian(正态分布)、gamma(伽马分布)、poisson(泊松分布)等。
广义线性模型可以通过glm()函数建立,使用的数据是包‘TH.data’自带的bodyfat数据集。
data("bodyfat", package="TH.data")
myFormula <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
设置响应变量服从正态分布,对应的连接函数服从对数分布
bodyfat.glm <- glm(myFormula, family = gaussian("log"), data = bodyfat)
预测类型为响应变量
pred <- predict(bodyfat.glm, type="response")
plot(bodyfat$DEXfat, pred, xlab="Observed Values", ylab="Predicted Values")
abline(a=0, b=1)
预测结果检验如下图所示:
由上图可知,模型虽然也有离群点,但是大部分的数据都是落在直线上或者附近的,也就说明模型建立的比较好,能较好的拟合数据。
4、非线性回归
如果说线性模型是拟合拟合一条最靠近数据点的直线,那么非线性模型就是通过数据拟合一条曲线。在R中可以使用函数nls()建立一个非线性回归模型,具体的使用方法可以通过输入'?nls()'查看该函数的文档。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18