
企业建立大数据管理政策的五大贴士
随着企业所收集的数据量的成倍增加,他们创建数据的速度也在加快。在数字宇宙中的数据量是相当惊人的,现如今,“gegobytes”和“brontobytes”即将取代百万兆字节,成为常见的数据存储测量单位。同时,各国政府机构都在编写和制定复杂的新规则,因此,企业对于相关数据的收集分析和使用必须遵循和符合这些原则的规定。美国证券交易委员会最新的SCI规定长达700多页。同时,工业集团也在继续编写强制性的新规则或更新现有的规则,如PCI-DSS。这些现状都使得企业的大数据管理变得非常困难,而在本文中,我们将为大家介绍五大战略步骤,以帮助企业开始建立其大数据管理政策。
设定数字化的治理目标
首先,企业必须明确数据信息的管理及其目标是不同的。如果不能有利于创造新的财富价值,那么,数据信息治理政策对于企业领导没有任何意义。毕竟,创造财富价值才是企业存在的意义。为了取得成功,数据信息治理建立和强制执行数字化信息的相关规则,以创造财富。新的财富是通过以两大隐藏的支出为目标而创建的,这两大隐藏的支出分别为发现日常业务中的数据的成本及验证数据的真实准确性的成本费用。
所有的管理规则,无论其是官方的监管规定、行业规则或商业协议,都需要实现一个共同的目标:创建可以依赖的真实准确的数据真相。当企业将这些方方面面联系起来,并看到大数据管理策略将如何帮助企业降低成本,进而创造出更大的净收入,同时实现合规性时,想要获得企业执行层面的支持是相对容易实现的。
从一开始就实施数字化治理策略
其次,信息管理必须涵盖在业务范围内的任何设计流程的前端。通过设计流程确保对数据隐私的充分保护已经成为一种流行的最佳实践方案,但这仅仅只包含了一种数据分类:个人身份信息。同样的原则也应适用于所有的业务流程,无论是改造现有的治理策略或设计全新的东西。在21世纪,每一道工序所生成的新数据都必须进行治理。在一开始就应该建立良好的大数据治理规则能够在后期带来巨大的成本节约,因为这样就没有人会问“我们要如何处理所有这些新数据?”的问题了。
另一个可能更有意义的是,当把数据信息移动到设计的前端,企业关注的焦点将集中于如何利用新的数据以创造出新的财富价值。许多新产生的数据是非常精细的,观测数据并不需要治理,包括按键监控、语音通话记录、应用程序事务和执行日志数据。但当我们问到数据如何能够帮助企业提高绩效时,可以有完全不同的设计结果。
衡量大数据治理的绩效
第三,创建衡量数字化治理绩效的指标。大数据管理所需要的不仅仅是有相关的管理政策和程序就行了,其还需要相关的合作伙伴企业和承包商能够正确的执行。甚至包括必须强制性的执行相关管理规则。这意味着当数据是不符合规定的时候,能够衡量性能,并进行快速的计算。
该衡量指标必须关注于人力资产和机器执行的性能表现,特别是在设备设计和软件应用程序运行过程中很可能 出现的合规性风险。在一个复杂系统中的未经报告的节点往往是一个更大的合规性问题的第一个指标,但如果没有相应的衡量指标的化,那么任何潜在的不良后果就很少有机会能够通过测量在早期被干预和限制了。
强制执行您企业的规则
第四,进行资源投资,并严格执行您企业的信息管理规则。在过去的两年里,许多重大的公共性黑客攻击事件和系统被黑事件均已经发现,企业的确是制定了相关的衡量数字化治理绩效的指标,以防止不良后果发生的。但问题就在于:没有专人被指派负责审查并做出快速反应。这便是必须以创造真实的财富价值为目标变得如此重要的原因所在了。很久以前,信息安全工作者们就已经认识到他们工作中最难的部分是调查和发现不良事件的根源。有了这方面的努力,相关的事故便是可以避免的,巨大的成本节约也是可能的。但是,解决方案必须有包括人为的详细审查,并在不良事件发生前,进行事务优先顺序的调查和排序。
实施强制性的数据信息治理规则并不需要让人力资源被分配到无休止的、繁琐的日志数据的审查中。相关的应用程序和服务可以分析信息安全相关的日志数据。企业市场竞争的秘密就在于适当的利用这些大多数公司都已经有的这些应用程序和服务,以服务于一个更大的议程,包括信息治理规则。事实上,数据信息治理与信息安全之间的维恩图(Venn diagram)重叠变得越来越多。这是因为有效的数据安全的实现需要由大数据治理策略提供:真实和安全的数据,可以被信任的认为是一家企业准确真实的记录和企业行为。
了解您的客户
出人意料的是,在几乎每一家企业,其公共部门都是其电子数据最大的消费者。实际上,任何一家企业的各个部门都需要这些数据,以便按照相关的法规进行管理,这些包括部门:就业实践,生产实践,会计实务,车队维修,库存质量控制等。但是,大多数大数据分析企业的高管团队并没有认识到,新的公共法规的目的是为了更好地保证企业信息系统的建立和维护相关的数据调查,保证执法应当如实记录。换言之,任何一家企业都需要由其被托管的数据来证明他们的业务记录的完整性。
这是一个根本性转变,具有重要的经济意义。从历史上看,企业总是在事后做出反应。企业现在被要求允许公共部门访问,有时需要是实时的,以提供持续的性能数据,作为遵守相关监管规定的证据。为了使数据可靠,企业对数据维护系统实施强加的要求。花费在电子发现和律师方面所找到记录的迅速消失,并被前端信息治理投资所取代,以确保数据满足公共部门的需求。而与所有其他领域的业务一样,顾客永远是对的。
本文中所介绍的这五大战略正在被世界各地的企业公司所广泛接受,以确保提升其竞争优势。他们不容易实现,但企业如果不这样做,则可能意味着需要花费更多的成本和费用,最终降低企业的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22