京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电子商务网站数据分析
一、网站分析&电子商城的业务运营的问题
对于电子商务来说,网站分析表现为研究客户对于在线商品进行的浏览行为特征,以及购买的行为特征。其中关于电子商务的客户购物行为的多样化特征可以参考下图:
为了反映电子商城实际运营的中问题,网站分析应该主要体现为如下的几个方面:
市场部门需要知道不同的广告活动带来的客户的实际效果(浏览&购买)——需要具体到不同的市场活动的推广渠道,新老客户,以及地域分布;
产品部门需要知道在架商品的“绩效”表现(浏览&购买)——需要具体到在架商品的类别,品牌,以及款式等等;
销售部门需要知道销售订单的来源组成——直接登录的客户购买的订单,广告渠道生成的销售订单,以及搜索引擎生成的销售订单等等;
二、电子商城业务运营问题的解决方法和手段
针对网站分析已经得到的相关结论,电子商务的实际问题的解决可以通过以下三种方式进行解决:
纯人工的方式——通过手动的调整电子商城的相关的功能和页面;
营销规则(引擎)的方式——通过网站分析得到的相关业务问题,人工的制定业务相应的营销规则通过商务智能的方式形式来实现(如下图)
推荐引擎的方式——通过数据挖掘和机器学习的方式,计算得到每一个客户的购物偏好,进而推荐其喜好的商品和促销活动;
备注:关于规则引擎和推荐引擎的区别如下:
规则引擎是针对的是电子商城的某一个或者多个客户群;推荐引擎则是精准到单个用户的偏好
规则引擎是需要电子商城的实际业务的运用人员进行相关的调整和设置;推荐引擎虽然能够根据实际的业务进行相关的人工干预,但是其实现是系统自动化的。
三、规则引擎&推荐引擎
针对营销规则(引擎)的实际运用的分析
对于登陆页面的管理(或者说,高跳出页面)——通过网站分析得到不同的广告来源的效果不一样(来源,新老客户,地域等等),可以通过规则引擎控制不同的广告来源,以及新老客户等参数显示不同的促销活动,这样可以大大的提高市场活动的转化率。
对于站外搜索(SEO&SEM)流量来源的优化——由于目前搜索引擎是电子商城网站的重要并且稳定的流量来源,可以通过网站分析得到重点的关键词(SEM&SEO)的流量转化中的具体问题,例如搜索引擎的类型,来源,关键词等等设定相应的营销规则,实现搜索引擎流量细分的个性化着陆页。
对于电子商城网站在线商品的营销规则设定,可以将电子商城在线商品按照价格,或者品牌等进行分类,当客户对于某一类商品感兴趣(浏览&购买)可以根据相应的营销规则有针对性推荐业务主打的商品和市场活动。
对于电子商城访问最高的页面,通过网站分析得到网站内部访问最高的页面的相应问题,例如新客户的退出率很高,可以通过执行相应的营销规则在相应的页面呈现代金券等网站优惠的促销工具
最后,还有可以根据电子商城客户的实际购物路径和特征,制定相应的业务规则——例如删除购物的动作,或者访问的页面深度和长度超过既定的区间,则进行相关的规则营销。
四、针对推荐引擎的实际运用的分析
电子商城的推荐引擎就是提供“一对一”的客户体验,让顾客在最少的时间里选择并购买尽可能多的产品。特别是针对电子商城的在线商品的品牌和类别很多,并且客户的数量的偏好的差异性很大的情况下,推荐引擎的效果则会更好。其中推荐引擎的基本实现方式如下:
个性化品牌和品类的推荐——展现在电子商城首页和相应的列表页面,主要目的在于对于网站的整体流量的导航作用
个性化的商品推荐——展现在电子商城的列表页和商品明细页面,以及购物车页面等等,主要目是通过在每一个客户购物的过程中推荐其偏好的商品,从而达到Cross-Sell,Up-Sell,andNext-Sell
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22