京公网安备 11010802034615号
经营许可证编号:京B2-20210330
游戏数据分析核心数据和算法公式详解
一、运营数据
(1)平均同时在线人数(ACU: Average concurrent users):即在一定时间段抓取一次数据,以一定周期为期限;周期内的ACU可取时间段的平均数据。[例如:系统每一小时抓取一次数据,全天24小时共24个不同时刻的在线数据,则每天的ACU是这24个数据的平均值(每个公司有每个公司的定义,一般ACU取平均值,若针对某一时刻,则直接在某时刻内直接统计用户数)
(2)最高同时在线人数(PCU:Peak concurrent users):即在一定时间内,抓取最高在线数据。(例如:单天最高在线:系统每小时统计一次数据,全天24小时共24个不同时刻的在线数据,则24个时间段内最高的用户在线数据为PCU)
(3)充值金额(RMB):即在一定周期内充值总金额。
(4)元宝消费金额(RMB):即在一定周期内,玩家在游戏商城中的消费总金额(仔细看,充值金额与元宝消费金额有着明显区别,上者受活动影响,下者受商城道具需求影响。)
(5)每付费用户平均收益(ARPPU: Average Revenue Per Paying User:)相似于下载游戏的消费比率,(国内很多人以“ARPU”称呼,个人定义不同),此类数据主要衡量付费用户收益(公式:月总收入/月付费用户数)
(6)平均每活跃用户收益(ARPU: Average Revenue Per User):主要衡量游戏整体贡献收益;毕竟除了付费收益,活跃用户也能产生收益,(一般国内以此数据为核心,各家算法不同)(公式:月总收入/月活跃用户)(7)平均生命周期:平均生命周期:有新增账户在首次进入游戏到最后一次参与游戏的时间天数。比如记录某一个月,这个月里,每个新增用户的生命周期之和/MAU=平均生命周期。(8)LTV生命周期价值(LTV: Life Time Value):约定一个计算的生命周期值(比如上个月的平均生命周期,或者约定为15日,即这个月有15日登陆记录的账户数),符合这个生命周期条件的账户数中,充值金额的和/条件账户数。
(9)每日注册并登陆的用户数(DNU: Daily New Users):这个言简意赅,就不详谈了,直接从后台抓取即可。
(10)新登用户中只有一次会话的用户(DOSU: Daily One Session Users):这个也很简单,此类数据主要衡量新用户的质量,买量的可以参考一下。
(11)每日登陆过游戏的用户数(DAU: Daily Active Users):直接从字面就能了解了,一般从后台抓取。
(12)七天内登陆过游戏的用户数(WAU: Weekly Active Users):这个还是很好理解,就不废话了,此类数据主要衡量周变化。
(13)30天内登陆过游戏的用户数(MAU: Monthly Active Users):浅显易懂,主要衡量产量的粘性以及用户的稳定性。
(14)月流失率:(公式:30天前登陆过游戏,30天内未登陆游戏的用户数/MAU)
周流失率:(公式:7天前登陆过游戏,之后7天内未登陆游戏的用户数/WAU)
日流失率:(公式:统计日登陆过游戏,次日未登陆游戏的用户数/统计日DAU)
(15)30日留存率:新用户在首次登陆后的第30天再次登陆游戏的比例
7日留存率:新用户在首次登陆后的第7天再次登陆游戏的比例
3日留存率:新用户在首次登陆后的第3天再次登陆游戏的比例
次日留存率:新用户在首次登陆后的次日再次登陆游戏的比例
二、运营成本
(1)投入/运营成本(RMB):本月为推广游戏而投入的营销及市场费用金额
(2)产出/元宝消费金额(RMB):玩家周期内(日/周/月)在游戏中的消费总金额
(3)投入产出比(ROI):简而言之,就是说付出与回报是否成正比。(公式:本月的产出/本月的投入)
(4)单个活跃用户推广成本(RMB):(公式:本月投入/本月新增活跃用户数)
(5)单个付费用户推广成本(RMB):(公式:本月投入/本月新增付费用户数)
三、用户状态数据监控
(1)活跃用户数:对于活跃用户,每家定义各有不同.7天内有3天登陆过账号的便可成为活跃用户。
(2)新增活跃用户数:首次上线游戏的用户数
(3)流失活跃用户数:上期(7-14天)有过登陆,在本期(最近14天)未登陆的用户数。
(4)回流活跃用户数:上期(7-14天)未登陆,在本期(最近7天)有登陆的用户数。
(5)活跃用户流失率:(公式:(本月流失用户/上月活跃用户)*100%)
(6)活跃用户充值率:(公式:(本月活跃付费用户/本月活跃用户)*100%)
(7)活跃用户在线时长(单位/小时):(公式:当期(7天)所有活跃用户在线时长总和/当期(7天)活跃用户数)
(8)付费用户在线时长(单位/小时):(公式:当期(7天)所有付费用户在线时长总和/当期(7天)付费用户数)
(9)新增活跃用户充值率:(公式:(本月内有充值的新增登录用户/本月总新增登录用户)*100%)
(10)新增活跃用户高活跃率:(公式:(本月新增登陆用户中的高活跃用户数/本月新增登陆用户数)*100%)
四、活跃用户状态
(1)高活跃用户数:(个人定义:)当期(7天)内总在线时长大于或等于12小时的活跃用户数。
(2)新增高活跃用户数:(个人定义:)当期(7天)高活跃用户减去上期(7-14)高活跃用户数。
(3)流失高活跃用户数:(个人定义:)上期(7-14天)在线时长大于等于12小时,当期(7天)在线时间小于12小时的活跃用户数。
(4)回流高活跃用户数:(个人定义:)上期(7-14天)在线时间小于12小时,当期(7天)()在线时长大于等于12小时的活跃用户数
(5)高活跃用户流失率:(个人定义:)公式:(当期(7天)流失高活跃用户数/上期(7-14)高活跃用户数)*100%
(6)高活跃用户充值率:(个人定义:)公式:(当期(7天)有充值行为的高活跃用户数/当期(7天)高活跃用户数)*100%
(7)新增高活跃用户充值率:(个人定义:)公式(本月新增登陆用户中的高活跃用户数/本月新增登陆用户数)*100%
五、付费用户状态
(1)付费用户数:截止到统计日,所以曾经有过充值的用户总数。
(2)新增付费用户数:当期付费用户数减去上期付费用户数。
(3)活跃付费用户数(APC):当期(周/月)有过充值行为的用户数。
(4)流失付费用户数:上期有登陆行为,当期没有登陆的付费用户数。
(5)回流付费用户数:上期未登陆,在当期有登陆的付费用户数。
(6)付费用户流失率:当期流失付费用户数/上期活跃付费数。
(7)付费用户月平均充值次数:当期所有充值次数/当期付费用户数。
(8)付费用户月平均充值金额(RMB):当期充值总额/当期付费用户数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17