京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这一次,和你解释清楚!
》CDA常老师:SASEG是面向长期存在数据分析,大型企业中商业报告的人员设计的课程。只有本公司有健全的IT环境(oracleteradatasqlserver等数据库,需要经常性的做报表)情况下才需要学习本软件。该软件可以提供全方位的企业商业智能(BI)服务。但是学习难度大,需要涉及编程内容。学习该课程的学员一般是企业的IT人员转数据分析岗位的、金融国企的员工,因为该公司已经购买了该软件。SPSS是面向业务为主导,数据为辅助的工作人员的培训课程。以分析型市场营销人才、分析型财务人才这些不满足用EXCEL作数据分析的人员。该软件在咨询机构、大型企业中的非数据分析核心部门、中小企业等运用最为广泛。学习该课程的学员一般是各类咨询顾问、管理人员、新型分析型业务人员。学习SASEG和SPSS中的任何一门都可以完全覆盖CDA一级的认证内容。
所以基于效益最大化原则,如果是完全一张白纸的初学者,建议还是从SPSS入手比较好。之后我会推荐SAS。
【开课信息】
时间:8月06日-8月28日@北京朝阳/远程-基于SPSS
【课程大纲】
|
CDA课程安排 |
课程 |
大纲简介 |
预期效果 |
|
第一阶段
|
《数据分析师基础理论》 |
行业分析,常用方法,统计基础,Excel数据分析。 |
零基础入门,掌握数据分析常用方法、基本原理及分析思路 |
|
第二阶段
|
《数据处理技术》 |
基于SPSS/SAS EG工具手把手教学操作,数据的录入、整理、清洗、处理、分析、输出、解读等。 |
掌握一门专业数据分析软件,会使用软件进行数据处理及分析。 |
|
第三阶段
|
《数据建模分析》 |
基于SPSS/SAS EG数据建模,方差、回归、分类、主成份、因子、聚类、多元、时间序列等数据分析模型。数据可视化,结果输出及解读。 |
熟悉各模型应用环境,学会自行建模分析,独立完成数据分析工作,并能输出图表解读数据现实意义。 |
|
第四阶段
|
《案例分析及业务应用》 |
电信,金融,电商,零售等实际案例分析;BI、文本挖掘、大数据、智慧城市等前沿技术。 |
通过真实案例举一反三,熟悉整个数据分析流程;了解前沿技术,增强业务与技术对接能力。 |
【学员对象】
1. 各行业数据分析、数据挖掘基础薄弱从业者
2. 在校数学,经济,计算机,统计等专业教师和学生
3. 经济,医学生物研究院科研人员
4. 数据分析,数据挖掘兴趣爱好者及转行人士
【讲师介绍】
数据分析金牌团队:CDA数据分析研究院讲师团队,大陆、台湾等高校著名教师以及知名企业资深数据分析师
常国珍,会计学博士、社会学硕士,毕业于北京大学人口所,目前就读于北大光华管理学院,SAS公司数据挖掘与统计分析课程讲师。曾就职于方正国际金融事业部和长江商学院投资者研究中心。主持过商业银行数据挖掘平台建设、商业银行信用评分模型的构建与固化等商业项目。参与构建的股票量化投资模型被某大型基金公司采纳,并于2013年九月正式发行。
曹正凤,男,统计学实验师,博士学位,具有十几年统计教学经验。最新研究随机森林遗传算法,参与《大数据背景下基于中国烟草消费需求的供给结构分析研究》项目,《基于大数据整合的空气质量测度方法研究》,项目进入实施阶段。先为CDA基础理论讲师,对于统计学教学有丰富的经验。
翟祥,人民大学统计学博士,北京林业大学管理学院统计系教授,SAS公司骨灰级讲师。长期从事金融、电信、零售行业数据挖掘咨询工作。
徐老师,男,高级数据分析师,具有深厚的数理统计与应用数据分析专业背景,上海某金融机构数据分析部门高级DA,具有八年数据分析、数据挖掘的从业经验,曾就职零售企业、咨询公司等,独立或带团队完成零售、电信、金融等多个大型数据挖掘项目。
丁亚军,男,首席数据分析师,兼职中国学习路径图国际培训中心技术顾问,SAS、SPSS高级统计学讲师。曾参与2012国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核等大型数据处理项目,具有丰富的数据处理经验。
【课程优惠】
1. 全日制在读学生8折优惠
2. 参加过论坛其他现场班老学员9折优惠
3. 同一单位三人及以上报名9折优惠,五人及以上8折优惠
4. 同时报名参加LEVELⅠ和LEVEL Ⅱ享受8折优惠
5. 零基础学员建议同时报名CDA数据分析员课程,立减400元。
【关于证书】
CDA数据分析师等级认证证书
(此证书为CDA中英文等级认证证书Level Ⅰ,全国统考,一年两次,此证书为CDA数据分析师认证证书,可以作为企业事业单位选拔和聘用专业人才的任职参考依据。)
【报名流程】
1.在线填写报名信息
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26