京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据环境下保险消费特征的改变
大数据时代的到来改变了数据的采集、传输、存储、处理方式,引起了生活方式和社会经济的变革,也给保险业带来了全面和深刻的影响。保险公司纷纷利用大数据来进行保险营销、保险服务方面的尝试和创新,但目前的保险大数据环境尚不成熟,现有的保险消费方式还处在由传统到新型、由被动到主动的一个变化期,大数据环境下的保险营销需要适应新的保险消费特征。
保险消费选择多样化
传统保险模式运作下,保险公司评估消费者的风险水平、消费能力、消费意愿的能力不强,导致部分领域保险产品定价过高,部分领域成为剩余市场。大数据环境下,保险业可以获得全量、实时、潜在的数据来进行详细分析,进行保险产品细分和个性化设计,保险公司的风险管理和成本管控可以更加精细化,这为保险产品创新带来了广阔空间,长期困扰保险业的产品和服务同质化问题有望从根本上得到解决。
比如,保险公司根据消费者的网站登录痕迹、朋友圈留言、贷款信用记录等信息,发现不同消费群体保险需求和风险特质,为保险消费者提供诸如户外骑行保险、医疗整形保险、变现借款保证保险等特色险种,保险消费选择更加多样。
保险消费流程简单化
传统保险经营过程中,保险公司与投保人信息不对称的情况较为突出,保险公司通过要求投保人应当履行如实告知义务,投保时需要填写内容繁多的投保单,出险后需要提出理赔申请和提供繁琐的证明材料。在大数据环境下,风险特征的描述数据极大丰富,保险公司可以通过各种渠道获取更加全面的风险信息,运用个人信息、交易记录、气象信息等社会数据来分析和掌握客户情况,获得与承保理赔相关的信息,在控制风险的前提下进一步减少投保人的告知责任,有效简化承保理赔手续,保险消费流程变得更加简单。
比如,保险公司根据掌握的网络交易数据,研究消费者网购习惯和退货概率,为不同风险的消费者提供不同保费的退货运费险,消费者只需一键购买;对于购买了航班延误险的消费者,无需提供气象证明,甚至不需提出理赔申请,保险公司就能够根据气象信息等大数据资源主动理赔。
保险消费理念前沿化
大数据环境下,传统保险业在集合大数方面的优势逐渐弱化,保险技术服务壁垒逐步瓦解。通过使用各种搜索引擎和比价平台,消费者消费洞察力不断提高,保险消费理念也变得更加前沿。
一方面,越来越多的保险消费者脱离了传统柜台业务模式,开始使用各种自助终端购买保险业务。通过手机APP应用软件就可以轻松完成保险产品的查询和购买,甚至自助完成车险简易案件的查勘工作。
另一方面,保险消费者出现偏好碎片化、谋求资金收益的消费倾向。在透明公开的渠道选择保险产品时,消费者更加偏好设计简单、投保便捷、费率较低的保险产品。保障项目经过分解、条款说明更加简单、产品保费也大大降低的保险产品,更加适应消费者自行挑选的需要。此外,大数据环境下的保险消费者比较熟悉互联网金融,容易在各类理财产品间进行比较,在购买网上销售的投连、万能型保险产品时更加注重资金收益。
保险消费体验延伸化
传统的保险服务集中于经济赔偿与给付,保险消费体验也只局限于保险公司履行了赔付责任。大数据环境下,保险公司与客户的关系不再是一对一的交互沟通,逐渐形成多维网状交互沟通模式,基于客户数据的客户关系管理变得尤为重要。
保险公司可以借助大数据的积累,整合汽车修理、零配件供应、医疗健康服务等供应链,进一步延伸保险产业链边界、维护客户关系,在降低保险经营成本的同时,不断优化保险消费体验。目前,保险公司可以定期为消费者提供包括车辆风险检查、保养维修、交易资讯、健康管理在内的各项服务,未来还有可能基于大数据为消费者提供更加全面的风险管理创新服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27