
企业、互联网+、大数据三者的玩法
随着互联网产业的蓬勃发展,越来越多的传统行业正在被互联网技术所改变。当前,“思维推动创新、数据驱动世界”已成为行业共识,特别是伴随大数据、云计算、物联网技术的应用,“互联网+”时代已经扑面而来,拥抱互联网就是拥抱希望、拥抱未来。
用户导向是企业互联网化的思想基础
到底什么是互联网思维?
简而言之,就是把传统商业的本质做到极致的思维。那么,传统商业的本质是什么?传统商业的本质就是为用户供给产品,企业获取盈利的系统化过程。在该过程中,商业本质有且仅有两个核心要素,即用户与产品。而互联网思维,就是基于互联网环境和技术,对用户和产品进行深度理解并至极致的思考方式。从表象上看,围绕用户,互联网思维可以衍生出诸如“免费思维”、“社会化思维”、“平台思维”等基于用户获取和服务的思维模式;围绕产品,互联网思维可以衍生出诸如“迭代思维”、“简约思维”、“极致思维”等基于产品设计、开发的思维模式
但从本质上看,正是由于互联网空间、企业及品牌有了更多的直面用户的机会,前者与后者可以直接交互、沟通和交易。而在这个虚拟空间下,用户的行为轨迹、消费习惯、选择偏好等一切数据都会被电子记录并保存下来。借助于互联网技术,我们可以以前所未有的深度,来理解我们的用户。从某种意义上来说,互联网思维就是借助于技术和数据的“用户导向”,取代传统的借助于惯性、经验和个人的“产品中心”。
关注用户注意力是前提
在互联网高速信息化的时代,用户自主选择、掌控信息的能力空前加强,部分用户甚至成为信息主体、大众焦点。在互联网时代下,“羊群效应”无限放大,企业应从传统时代的“制造注意力”转变为“追随注意力”。如今借助于大数据收集和挖掘技术的发展,“追随注意力”已经成为现实。
如今,我们运用大数据技术可以对用户偏好进行更好的把握。
优化用户体验是核心
用户体验即有意识地、仔细地经营企业与用户之间的高频互动点。在供应链全球化和信息扁平化的今天,产品同质化和价格无差异化将不可避免,企业与竞争对手之间唯一的区分便是用户体验。当用户愿意花费更多来获取更好的体验,并与企业产生高频互动,而且觉得物有所值时,企业与竞争对手的差别才会显现。
大数据定义用户导向
由以上我们注意到,无论是用户注意力,还是用户偏好、用户体验,亦或是用户付费,我们可以不再依赖过去的经验和惯性,而是转而寻求大数据的分析框架。大数据是通往用户本质的规律最具象表现,遇到问题,首先依托的不是经验,而是数据。大数据思维,或者说大数据下的用户思维是更符合传统企业互联网化需求的一种“互联网”思维方式和实际体验。
我们知道,互联网的优势在于,可以对每一次的用户行为进行追踪与保存,从而形成海量的大数据。通过大数据分析,可以让用户更加完整鲜活地展现在企业面前,该用户是谁?他在哪里?怎么联系到她?她需要什么产品?她通过哪些渠道购买?她的购买习惯是怎样的……在完整的“用户画像”面前,企业面对“裸泳”的用户,用户需要什么,怎么获取,怎么营销一目了然。大数据时代的来临,让我们可以对用户进行深度理解并至极致。同时,用户画像的完善更让企业打通线上和线下成为可能,让互联网化的商业运营成为可能。
运用“互联网+”,展现统计大数据价值
“互联网+”新形态影响下的大数据所带来的巨大社会经济变革,已经延伸触及到各个行业各个领域。为全市经济社会进一步发展提供强有力的统计保障,统一管理、统一发布数据,提高政府统计公信力,增强宏观调控和宏观决策的科学性、预见性和有效性。而综合数据平台的数据采集、数据汇总、分析预测等无不是“互联网+”统计数据之缩影,也正因此统计数据才发挥出其卓越的价值。
展望未来,主动拥抱“互联网+”
“互联网+”不仅正在全面应用到第三产业,形成了诸如互联网金融、互联网交通、互联网医疗、互联网教育等新业态,而且正在向第一和第二产业渗透。农业互联网正在从电子商务等网络销售环节向生产领域渗透,为农业带来新的机遇。工业互联网也在从消费品工业向装备制造和能源、新材料等工业领域渗透,全面推动传统工业生产方式的转变,用户甚至可以直接参与到产品的研发中。
“互联网+”推进了新一代信息技术的发展,推动了无所不在的创新,催生了以用户创新、开放创新、大众创新、协同创新为特点的面向知识社会的创新2.0。正是新一代信息技术与创新2.0的互动和演进共同作用,改变着我们的生产、工作、生活方式,并给当今中国经济社会的发展带来无限的机遇。我们要站在“互联网+”的风口上顺势而为,主动拥抱大数据,推动统计工作提质增速。
“互联网+”是一种能力,它缩短了时空距离,大数据产业给不同国家和地区发展带来了机遇,任何事情要站在未来角度看今天,互联网+大数据形成完美的商业闭环,为网商提供有价值的数据信息,为用户打造有价值的网购体验。分步骤,精准化的营销,从而提升连锁网店的综合竞争优势,达成提升赢利率的终极目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29