
大数据商机:用户打瞌睡都值钱
关于 “大数据” 这个词,我第一次关注到,是通过一本叫作《大数据时代》(维克托·迈尔-舍恩伯格 / 肯尼思·库克耶著)的书中看到的。
在这本书中,讲到了一个航海地图的故事,大概意思是:一个要去航海的船长,如果他想使用已知的航海导航图,他必须把他在航海过程中获得的新导航信息反馈回来,作为信息的交换。这样的话,越往后面使用航海导航图的船长,所能使用和看到的航海路线就会越充实。
21 世纪商业思维的变迁
这个模式本身(虽然是发生在很多很多年前),放到现在的互联网大数据时代,这就是一个非常有创意的商业活动。
现在的互联网,已经不再是简单的买家和卖家之间的技术对接桥梁,而是更像一种互相可以参与,可以共同发展的一种合作(当然其中还同时存在大量的非合作性的竞争)。
现在很多电子商务平台,以前是以卖实物给个人客户,个人客户用钱财来购买相对应的实物。这是一个单向的过程,其实并没有做到双向的互动。就像航海故事中的一个船长为了得到航海图,付了一笔钱,就拿到了某个版本航海图的使用权一样。随着时间的流逝,卖家并不知道买家下一次有什么样的购买需求。买家也不知道卖家未来会能提供什么实物商品。在买家和卖家之间,有一定的供需不平衡。
一般来说,买家并不希望提供个人的私有信息让卖家知道。其中的原因之一,就有可能是因为买家对于自己的私有信息非常敏感,而又感到如果让卖家知道自己的私有信息,又没有什么可以让他个人赢利的可能,所以这就造成了卖家想获得买家的更多的个人信息,而买家却又不想提供给卖家。
如果换一个角度来想,如果买家肯主动提供自己的个人信息给卖家,那买家多数是认为这样的行为,是可以给自己带来益处的,即像航海故事中的那些船长一样,他们拿到航海图,只需要把自己的航海经历反馈就可以了。那卖家可以提供什么能让买家主动来提供自己的个人信息呢?那多数就是买家想要得到的某种利益。
优秀案例:用户打的瞌睡都值钱
例如,一个做中医养生的公司,如果想让客户提供自己的个人健康方面的信息,比如个人的饮食种类,三餐时间,睡觉时间等。那这家公司就可以通过这些吃喝拉撒睡的信息来为客户进行疾病的预测,一般客户对免费的健康咨询报告总是受欢迎的。
很多人会问,这家公司如何赚钱呢,其实那家公司可以根据所掌握客户的大量数据进行分析,可以从海量的数据中推测出一些有价值的商业数据。
例如从很多客户三餐吃了什么,就可以推测一下,某些食品在某些地方的销售情况,再根据天气预测情况和交通运输状况等,可以估计一下,未来某个地方的这种食品的供应会如何,然后向这些食品的生产企业提供数据咨询服务,告诉食品生产企业哪个地方的这种食品会销售得更加好。
再者,拥有大量人员海量健康数据的公司,可以根据已经推测的预期结果,让某种医药生产厂商来决定是否要扩大或者缩减对抗某种疾病的药品的生产规模,以适应未来的潜在病患的购药需求。
拱卫商业思维的物质基础
计算机硬件的发展也促进了大数据时代的到来。记得在小学时,学校里就只有十几台用 5 英寸启动的 DOS 系统的老电脑,那个时候在上电脑课时,是一个数学老师在教我们用 LOGO 语言来在计算机屏幕上画图。现在的普通的个人电脑的容量已经早过了 G 时代,而且越来越多的年轻人,已经直接跨入到了移动时代——这为大数据时代,各种各样数据的存储和计算提供了物质条件。科技的发展,让二十年前的不可能变成必须。也把老旧的商业模式直接送进了坟墓。
现在在软件世界中,已经有了不少的可支持大数据运算的技术平台(如 TimesTen, Spark, Hana 等等)。在软件服务领域中,金融和电信公司一般对数据的存储和计算在数量上是要比一般的企业要多很多。作为金融行业的从业人员,在文章的末尾,我想给大家推荐一个由中国人组成的团队开发的云计算平台 YunTable。
在结构化数据分析方面,很多公司会选择业界比较成熟的解决方案(例如 Oracle 的 Exadata),但它的价格比较昂贵。对于许多大数据初创型的创业公司而言,这么高的前期硬件投入成本有点难以接受。而对这些创业期的小公司,YunTable 或许是一个可承受的选择。
YunTable 的双赢模式是这样的:YunTable 公司提供方案,在客户的使用过程中,客户也会及时地反馈到 YunTable 公司,公司可以进一步地完善和提升产品的性能,就像航海故事中的不断扩充的航海地图一样。
而对于像 YunTable 这样的软件公司来说,在大数据时代,与客户亲密合作,做互惠互利的事情,也不失为一个很好的商业切入点。
总结
每个人或者企业都有自己的需求,希望得到别人的供给。而每个人或者企业也想通过提供别人需要的供给来产生利润。大数据时代,让很多以前不大可能发生的事情,变得越来越让人有期待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22