京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据商机:用户打瞌睡都值钱
关于 “大数据” 这个词,我第一次关注到,是通过一本叫作《大数据时代》(维克托·迈尔-舍恩伯格 / 肯尼思·库克耶著)的书中看到的。
在这本书中,讲到了一个航海地图的故事,大概意思是:一个要去航海的船长,如果他想使用已知的航海导航图,他必须把他在航海过程中获得的新导航信息反馈回来,作为信息的交换。这样的话,越往后面使用航海导航图的船长,所能使用和看到的航海路线就会越充实。
21 世纪商业思维的变迁
这个模式本身(虽然是发生在很多很多年前),放到现在的互联网大数据时代,这就是一个非常有创意的商业活动。
现在的互联网,已经不再是简单的买家和卖家之间的技术对接桥梁,而是更像一种互相可以参与,可以共同发展的一种合作(当然其中还同时存在大量的非合作性的竞争)。
现在很多电子商务平台,以前是以卖实物给个人客户,个人客户用钱财来购买相对应的实物。这是一个单向的过程,其实并没有做到双向的互动。就像航海故事中的一个船长为了得到航海图,付了一笔钱,就拿到了某个版本航海图的使用权一样。随着时间的流逝,卖家并不知道买家下一次有什么样的购买需求。买家也不知道卖家未来会能提供什么实物商品。在买家和卖家之间,有一定的供需不平衡。
一般来说,买家并不希望提供个人的私有信息让卖家知道。其中的原因之一,就有可能是因为买家对于自己的私有信息非常敏感,而又感到如果让卖家知道自己的私有信息,又没有什么可以让他个人赢利的可能,所以这就造成了卖家想获得买家的更多的个人信息,而买家却又不想提供给卖家。
如果换一个角度来想,如果买家肯主动提供自己的个人信息给卖家,那买家多数是认为这样的行为,是可以给自己带来益处的,即像航海故事中的那些船长一样,他们拿到航海图,只需要把自己的航海经历反馈就可以了。那卖家可以提供什么能让买家主动来提供自己的个人信息呢?那多数就是买家想要得到的某种利益。
优秀案例:用户打的瞌睡都值钱
例如,一个做中医养生的公司,如果想让客户提供自己的个人健康方面的信息,比如个人的饮食种类,三餐时间,睡觉时间等。那这家公司就可以通过这些吃喝拉撒睡的信息来为客户进行疾病的预测,一般客户对免费的健康咨询报告总是受欢迎的。
很多人会问,这家公司如何赚钱呢,其实那家公司可以根据所掌握客户的大量数据进行分析,可以从海量的数据中推测出一些有价值的商业数据。
例如从很多客户三餐吃了什么,就可以推测一下,某些食品在某些地方的销售情况,再根据天气预测情况和交通运输状况等,可以估计一下,未来某个地方的这种食品的供应会如何,然后向这些食品的生产企业提供数据咨询服务,告诉食品生产企业哪个地方的这种食品会销售得更加好。
再者,拥有大量人员海量健康数据的公司,可以根据已经推测的预期结果,让某种医药生产厂商来决定是否要扩大或者缩减对抗某种疾病的药品的生产规模,以适应未来的潜在病患的购药需求。
拱卫商业思维的物质基础
计算机硬件的发展也促进了大数据时代的到来。记得在小学时,学校里就只有十几台用 5 英寸启动的 DOS 系统的老电脑,那个时候在上电脑课时,是一个数学老师在教我们用 LOGO 语言来在计算机屏幕上画图。现在的普通的个人电脑的容量已经早过了 G 时代,而且越来越多的年轻人,已经直接跨入到了移动时代——这为大数据时代,各种各样数据的存储和计算提供了物质条件。科技的发展,让二十年前的不可能变成必须。也把老旧的商业模式直接送进了坟墓。
现在在软件世界中,已经有了不少的可支持大数据运算的技术平台(如 TimesTen, Spark, Hana 等等)。在软件服务领域中,金融和电信公司一般对数据的存储和计算在数量上是要比一般的企业要多很多。作为金融行业的从业人员,在文章的末尾,我想给大家推荐一个由中国人组成的团队开发的云计算平台 YunTable。
在结构化数据分析方面,很多公司会选择业界比较成熟的解决方案(例如 Oracle 的 Exadata),但它的价格比较昂贵。对于许多大数据初创型的创业公司而言,这么高的前期硬件投入成本有点难以接受。而对这些创业期的小公司,YunTable 或许是一个可承受的选择。
YunTable 的双赢模式是这样的:YunTable 公司提供方案,在客户的使用过程中,客户也会及时地反馈到 YunTable 公司,公司可以进一步地完善和提升产品的性能,就像航海故事中的不断扩充的航海地图一样。
而对于像 YunTable 这样的软件公司来说,在大数据时代,与客户亲密合作,做互惠互利的事情,也不失为一个很好的商业切入点。
总结
每个人或者企业都有自己的需求,希望得到别人的供给。而每个人或者企业也想通过提供别人需要的供给来产生利润。大数据时代,让很多以前不大可能发生的事情,变得越来越让人有期待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26