京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据文化:传统企业互联网下的组织颠覆
在世界的发展历程中,有两类企业被奉为圭皋,一类是以通用电气为代表的传统企业,他们管理严谨,逻辑严密,员工西装革履,遵守着严格的上下班制度,被誉为世界跨国企业的典范;另一类以谷歌为代表的互联网企业,他们行事不拘一格,办公活泼灵活,员工穿着自由开放,创造力十足,被称作互联网时代的代言人。但是,随着互联网时代的到来,大量以通用为标杆的企业逐渐陷入了迷思,到底什么才是真正的企业文化,组织设计又该何去何从?也许从大数据文化的视角能给组织者一些启示。
正如《组织设计》一书中所坦言,所谓组织设计,所谓管理不过是对那些压在管理者头上的杂乱无章、不断变化而令人困惑的不同需求保持觉察、给予关注、进行分类,并作出优选排序。它是一种从混沌中创建秩序,在传统看来更倾向于艺术,而不是科学。如何能够在艺术中寻找规律,就是需要一种真正的文化予以配合了。
对于传统企业而言,内外部环境动态变化下的复杂决策,让其必须通过组织的强制性体制发育出严格的组织架构与研究功能以降低决策失误的可能性。但在互联网的大潮下,这种组织架构的僵化、反应迟缓逐步被更加灵活后来居上的互联网企业所击败,成为跨界打击的牺牲品。随着互联网的普及,互联网赋予了用户更多的权利,更加强了信息的传播效率,也许过去可以用一个星期乃至一个月应对的突发事件,对于企业而言只剩下24小时甚至更少,这样流程化、层级化的体系就不再是降低决策失误的代名词,反而会成为决策的阻碍。那企业该怎么办呢?答案可能就是大数据文化。
何谓大数据文化?简而言之就是在大数据采集的基础上,利用大数据改革企业的组织架构,分析企业的组织决策,最终实现实时响应、快速应对,让传统企业具备与互联网企业类似的企业管理模式。具体来说,借助《组织设计》的理论可以有以下的做法:
第一步企业组织全数据化改造。借助企业外部与内部的力量将企业的发展状态数据化,比如利用微信平台分析企业的客群动态,利用阿里巴巴等电商平台分析企业的交易信息,利用百度等搜索引擎平台搜索企业被关注的舆论热点,以外部大数据为外援,将企业内部的组织流程进行数据化改造,将企业的ERP供应链流程进行数据采集,甚至将部门内部工作流程进行量化,共同组成企业的大数据来源。
第二步企业定制分析闭环。在全数据收集的基础上,将采集的数据进行加工改造,将数据采集与数据分析进行有效对接,通过构建数据模型,将数据第一时间处理为可以使用的数据结论乃至数据成果,从而为下一步的数据辅助决策提供帮助。
第三步构建数据辅助决策体系。前面两部分都仅仅是大数据运用的基础,在此基础上借助大数据的分析成果,在自下而上的领域,改造组织的汇报体系,将多部门逐层汇报体系,改造为大数据自动实时监控体系,从而确保企业不会因为信息传递不畅导致企业决策滞后。在自上而下的领域,则需要根据大数据的分析结果对于企业决策体系进行进一步优化,利用大数据分析结果进行快速决策,从而为企业应对市场变化争取时间。
第四步全公司大数据文化建设。黄仁宇先生一直在分析中国经济发展史的时候感叹到,中国人缺乏数目字管理思维,在企业管理领域更是如此,数据分块孤立,成为数据分析孤岛成为了传统企业的常态。因此,在组织设计上就需要有针对性的培养组织文化,将企业的部门墙向大数据共享转变,从而让大数据成为确保企业发展的有力武器。
面对着互联网的高速发展,数据在企业中将会发生着越来越重要的作用,但是更重要的是大数据文化对于企业的改造,这将是提升传统企业组织效率的一枚有效利器。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08