京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析不是为了写一份报告
今天这篇文章的直接原因,是为了校正之前发表的“按流程进行数据分析”一文的部分观点。
文中简单描述了数据分析流程:明确分析目的;按照数据分析的目的、具体内容,收集所需数据;对数据进行初步的质量筛查;运用合理的数据分析方法进行分析;最后得到分析的结论,撰写解决问题的建议性报告。
乍读,这个流程好像没什么问题,再读,上面所讲的流程可能更适合调研性工作,提供基于数据分析的解决办法,严格来讲,这个流程遗漏了最为宝贵的环节,没有将数据分析的结论应用到实践中。换句话讲,就是为了报告而分析!
为什么要进行数据分析?肯定不是为了报告。数据分析报告仅是其中的一部分,更为重要的是将数据分析得到的模型或者建议付诸实践,在应用过程中不断的反馈并对模型进行优化调整,最终使业务得以提升,这可能是一个不断往复优化的迭代过程。
数据分析流程,严谨点来说,可以参考CRISP-DM(跨行业数据挖掘标准流程),如上图所示,它将整个数据挖掘过程分解为商业理解、数据理解、数据准备、建立模型、模型评估和结果部署6个步骤。CRISP-DM认为,数据挖掘过程是循环往复的探索过程,6个步骤在实践中并不是按照直线顺序进行,而是在实际项目中经常回到前面的步骤进行不断优化调整。
商业理解:理解项目目标和从业务的角度理解需求,同时将商业问题转化为数据挖掘问题,并制定完成目标的初步计划。
数据理解:从初始的数据收集开始,通过一预处理分析,目的是了解和掌握数据概况,识别数据的质量问题,发现数据的内部属性,或是探索有趣的数据集。
数据准备:涵盖了从原始粗糙数据中构建最终数据集(将作为建模工具的分析对象)的全部工作。数据准备工作有可能被实施多次,而且其实施顺序并不是预先规定好的。这一阶段的任务主要包括:制表,记录,数据变量的选择和转换,以及为适应建模工具而进行的数据清理等等。
构建模型:选择和应用不同的模型技术,模型参数被调整到最佳的数值。比较典型的是,对于同一个数据挖掘的问题类型,可以有多种方法选择使用。一些建模方法对数据的形式有具体的要求,因此,在这一阶段,重新回到数据准备阶段执行某些任务有时是非常必要的。
模型评估:进行最终的模型部署之前,更加彻底的评估模型,回顾在构建模型过程中所执行的每一个步骤,是非常重要的,这样可以确保这些模型是否达到了企业的目标。
模型部署:模型的创建并不是数据分析的最终目的。模型的作用是从数据中找到知识,获得的知识需要便于用户使用的方式重新组织和展现。根据需求,这个阶段可以产生简单的报告,或是实现一个比较复杂的、可重复的数据挖掘过程。在很多案例中,这个阶段是由客户而不是数据分析人员承担部署的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31