京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析不是为了写一份报告
今天这篇文章的直接原因,是为了校正之前发表的“按流程进行数据分析”一文的部分观点。
文中简单描述了数据分析流程:明确分析目的;按照数据分析的目的、具体内容,收集所需数据;对数据进行初步的质量筛查;运用合理的数据分析方法进行分析;最后得到分析的结论,撰写解决问题的建议性报告。
乍读,这个流程好像没什么问题,再读,上面所讲的流程可能更适合调研性工作,提供基于数据分析的解决办法,严格来讲,这个流程遗漏了最为宝贵的环节,没有将数据分析的结论应用到实践中。换句话讲,就是为了报告而分析!
为什么要进行数据分析?肯定不是为了报告。数据分析报告仅是其中的一部分,更为重要的是将数据分析得到的模型或者建议付诸实践,在应用过程中不断的反馈并对模型进行优化调整,最终使业务得以提升,这可能是一个不断往复优化的迭代过程。
数据分析流程,严谨点来说,可以参考CRISP-DM(跨行业数据挖掘标准流程),如上图所示,它将整个数据挖掘过程分解为商业理解、数据理解、数据准备、建立模型、模型评估和结果部署6个步骤。CRISP-DM认为,数据挖掘过程是循环往复的探索过程,6个步骤在实践中并不是按照直线顺序进行,而是在实际项目中经常回到前面的步骤进行不断优化调整。
商业理解:理解项目目标和从业务的角度理解需求,同时将商业问题转化为数据挖掘问题,并制定完成目标的初步计划。
数据理解:从初始的数据收集开始,通过一预处理分析,目的是了解和掌握数据概况,识别数据的质量问题,发现数据的内部属性,或是探索有趣的数据集。
数据准备:涵盖了从原始粗糙数据中构建最终数据集(将作为建模工具的分析对象)的全部工作。数据准备工作有可能被实施多次,而且其实施顺序并不是预先规定好的。这一阶段的任务主要包括:制表,记录,数据变量的选择和转换,以及为适应建模工具而进行的数据清理等等。
构建模型:选择和应用不同的模型技术,模型参数被调整到最佳的数值。比较典型的是,对于同一个数据挖掘的问题类型,可以有多种方法选择使用。一些建模方法对数据的形式有具体的要求,因此,在这一阶段,重新回到数据准备阶段执行某些任务有时是非常必要的。
模型评估:进行最终的模型部署之前,更加彻底的评估模型,回顾在构建模型过程中所执行的每一个步骤,是非常重要的,这样可以确保这些模型是否达到了企业的目标。
模型部署:模型的创建并不是数据分析的最终目的。模型的作用是从数据中找到知识,获得的知识需要便于用户使用的方式重新组织和展现。根据需求,这个阶段可以产生简单的报告,或是实现一个比较复杂的、可重复的数据挖掘过程。在很多案例中,这个阶段是由客户而不是数据分析人员承担部署的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22