
影响服装零售实体店的应用数据分析
畅滞销款分析是单店货品销售数据分析中最简单、最直观、也是最重要的数据因素之一。畅销款即在一定时间内销量较大的款式,而滞销款则相反,是指在一定时间内销量较小的款式。
一、畅滞销款分析
畅滞销款分析是单店货品销售数据分析中最简单、最直观、也是最重要的数据因素之一。畅销款即在一定时间内销量较大的款式,而滞销款则相反,是指在一定时间内销量较小的款式。款式的畅滞销程度主要跟各款式的可支配库存数(即原订货加上可以补上的货品数量的总和)有关,比如某款销售非常好,但当初订货非常少,也无法补的到货,这样在很短的时间内就销售完了,其总销售数量并不大,那么也不能算是畅销款,因为该款对店铺的利润贡献率不大。在畅滞销款的分析上,从时间上一般按每周、每月、每季;从款式上一般按整体款式和各类别款式来分。
举措 :
畅滞销款式的分析首先可以提高订货的审美观和对所操作品牌风格定位的更准确把握,多次的畅滞销款分析对订货时对各款式的审美判断能力会大有帮助;畅滞销款式的分析对各款式的补货判断会有较大帮助,在对相同类别的款式的销售进行对比后,再结合库存,可以判断出需要补货的量,以快速补货,可以减少因缺货而带来的损失,并能提高单款的利润贡献率;畅滞销款分析还可以查验陈列、导购推介的程度,如某款订货数量较多,销售却较少的情况下,则首先应检查该款的陈列是否在重点位置、导购是否重点去推介该款;畅滞销款分析可以及时、准确对滞销款进行促销,以加速资金回拢、减少库存带来的损失。
二、单款销售生命周期分析
单款销售生命周期是指单款销售的总时间跨度以及该时间段的销售状况(一般是指正价销售期)。单款销售周期分析一般是拿一些重点的款式(订货量和库存量较多的款式)来做分析,以判断出是否缺货或产生库存压力,从而及时做出对策。单款的销售周期主要被季节和气候、款式自身销售特点、店铺内相近产品之间的竞争等三个因素所影响。单款的销售周期除了专业的销售软件以外,还可通过Excel软件,先选定该款的销售周期内每日销售件数,再通过插入图表功能,通过矩形图或折线图等看出其销售走势,从而判断其销售生命周期。
单款销售出现严重下滑主要原因:
一是近期天气气温不适合该款销售;
二是销售生命周期已到,是一种正常的下滑;
三是新上了一个与之相类似的款式,并且可能在陈列时更突出一点,由于消费者的视觉疲劳而更青睐于新到的款式。
应对措施 :
如果该款库存量较大,我们就应该做出相应对策。如果是第一种原因,我们不用急,等到最适合天气气温时重点陈列,但应考虑一下自己的上货时间把握是不是存在一些问题;如果是第二种原因,我们应该即时促销,以提高该款的竞争力和该款的库存风险;如果是第三种情况,则应考虑把与之竞争的新款撤掉或陈列在较一般的位置,并检讨自己的上货时间把握。相反,如果根据销售走势判断出还有一定的销售潜力,则完全可以分析出该款大
概还可以销售多少件,这样再结合自己的库存量,进行合适的数量快速补货,以减少缺货损失。
三、营业时间分析
一般一个地区的店铺开业和打烊时间都是差不多的,但中间的班次安排就可能有所区别。这就要求我们对每个时间段对进店人数、试穿人数、成交票数和金额等进行分析,从而得出哪些时间段的进店率、进店试穿率和试穿成交率更高,再根据这一结果对员工班次进行调整。比如上午这些因素数据较低而下班前一小时这些因素数据较高,则可考虑改变全天营业时间;比如某一时间段这些因素数据非常集中,则可考虑将最多的员工、精力、促销等集中在这一时间段,通过准确的数据分析来合理调整工作时间和工作安排,能有效促进员工工作激情和销售增长。
四、销售/库存对比分析
对于品牌公司、省级代理商或开单一品牌多家店铺的加盟商而言,店铺之间的销售对比与货品调配能有效提升总仓的物流管理能力以及各店销售水平和解决库存能力。我们可以通过某一时间段内所选定的店铺之间的销售/库存对比分析表格来做多店之间的货品销售数据分析管理。对于销售/库存对比,一般店铺的选择是在同一区域内;在款式选择上一般是上货时间差不多。
五、老顾客贡献率分析
行销学一个著名的法则叫做20\80法则,在顾客管理理论中是指20%的顾客完成80%的销售额,而这其中的20%的顾客即我们的老顾客,特别是持我们品牌VIP卡的顾客。所以对于老顾客的管理是店铺管理中最重要的项目之一。由于某些品牌和店铺对VIP卡的办理条件制定不合理,或因顾客的其他特殊原因(如他人赠送购物、旅游购物等),常常造成部分发放的VIP卡为无效卡。相反,一些顾客虽然经常光顾,却由于某种原因一直无法达到VIP办卡条件,这对店铺的VIP卡客户管理都带来了一定的麻烦,所以老顾客的贡献率分析就显得尤为重要了。我们需要对老顾客(特别是持VIP卡的顾客)进行每次的消费登记和统计,并对特别重点的老顾客进行消费特点、消费频率和消费金额的分析。这样首先我们可以制定出更合理的VIP卡办理条件,其次是对老顾客的管理工作就更加准确了。比如有针对性的对老顾客进行短信祝福、新货及促销活动的通知、VIP专属特权、生日及节日礼物等工作,对老顾客的品牌忠诚度、介绍朋友、回头频率和再次的购买欲望等都会有较大的提升。
六、员工个人销售能力分析
通过员工个人销售能力分析,可及时了解和掌握每个员工的工作能力和工作心态,以便对症下药,提高个人销售业绩。
1、个人销售业绩分析。
不论在计算提成的时候是按个人业绩还是按平均业绩的,都要对每位员工的销售业绩进行统计。个人销售业绩分析包含两个方面,一个是每月个人销售业绩,另一个是分时间段个人销售业绩。每月个人销售业绩主要有两个因素构成,一个是个人的销售能力和工作积极性,第二个是个人”抢生意”的能力。通过每月的个人销售业绩分析,不仅可以看出个人的销售水平和工作积极性,还可以判断出团队协作意识、团结意识和店长的团
队协调和管理水平。分时间段的个人销售业绩一般是由店长及时性进行统计和比较的,如某些员工在一段时间内销售业绩出现异常,则可能是该员工的心态存在问题,比方说是否家中有事、失恋、对公司管理或上月工资不满、与同事发生矛盾等。店长应即时去了解并帮助其解决,以改变其心态,从而提高该员工的个人销售业绩。
2、客单价分析。
客单价即平均单票销售额,是个人销售业绩和店铺整体销售业绩最重要的影响因素之一。一般而言,提高单票的销售件数也就是提高客单价比提高销售票数要容易的多,而客单价的研究却往往被人们所忽视。员工个人的客单价销售水平主要随着陈列、服装搭配技术和附加推销技术等因素所影响。所以客单价的数据分析和单票销售多件的搭配特点可以判断出员工个人的附加推销能力以及其服装搭配习惯,乃至于可以分析出陈列水平以及订货的货品组合能力、色彩组合能力。对于因导购个人能力而产生的客单价过低,可以通过一定时期的针对性奖励措施来解决,如单票销售满多少金额或达几件给予单票现金奖励,这对于店铺的整体销售业绩提升是有较大的意义的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01