
互联网+时代:大数据安全面临的机遇与挑战
数据的爆发式增长和社会化趋势是大数据产生的本质原因。
大数据并不是量大,它有四个基本的特征:更大规模的数据、更多样化的数据、更加实时的数据、价值密度低商业价值高。我们可以看到一个现象,在之前有很多可以存、可以不保存的数据;而在大数据时代,即便我没有办法保存数据,也一定要把它保存起来,大家都知道数据就是价值,就是权力。
大数据的三大精髓:模糊替代精确、相关性替代因果性、全集代替样本。比如通过一个人的微信朋友圈可以基本知道这个人的工作、生活,甚至家庭、兴趣爱好;再看看这个人的朋友圈谁跟谁相互点赞,就能了解简单的社会关系,这就是大数据的相关性。其次,我们过去的科学研究方法,在没有理论基础的条件下选择抽取样本,放进自己的理论中进行相关的推断;现在大数据的方法是,不需要、不去看样本,而是要看到所有的数据,现在有了超算,就可以把数据的全局拿来分析。
大数据作为生产力,不仅要从经济层面对其进行推动,还需要社会层面为之付出努力。新一届政府提出在提高政府的治理能力、转变政府职能的前提下,要通过现代信息技术提高政府的治理能力。也就是说,政府为在执政过程中更加科学,就要有大数据作为支撑,让大数据成为一些决策制定的合理依据。
为什么要把发展大数据上升为国家战略呢?拿发放低保为例,比如公安部、民政部的数据无法提供给人社部使用,如果要为一个低保人员发放补贴,目前的做法,需要这个人提交申请,再去各个部门开证明,每个证明都要加盖公章。但是真正需要被救助的人往往缺乏相关的社会关系,也不了解申请的流程;由于数据的孤立,也让一部分人有钻政策空子办理低保的机会。
如果各部门的数据可以共享,那么发放低保这样的事儿操作起来就容易得多。比如看申请人名下的存款、汽车、家庭成员构成如何、每月生活必须消费支出如何等方面的数据,就可以为那些真正需要帮助的人发放低保补贴。目前这些数据信息分属不同的部门掌握,社保部门想调用这些信息是做不到的。只有把大数据的利用上升为国家战略,由国家整体协调推动政府各部门信息公开,才能极大地提高政府的执政效率和管理能力。
如今,黑客入侵的目的更多是要偷有价值的数据。就像小偷入室盗窃一样,有多少贼是开启防盗门进屋偷东西的?恐怕不足百分之一。防盗门做得再好,小偷可以从窗户进来,可以破墙而入。只要小偷能够进来,就会失窃,那么再好的防盗门都将失去意义。所以,现在我们要认识到的数据安全就是让黑客即使入侵系统也拿不走数据,即便拿走了数据也无法使用。这才是数据安全防护的较高境界。
大数据安全层次主要分为六个层面:应用软件、网络安全防护、容灾备份系统工具、数据库、操作系统和cpu。
这六个层面的发展是不能越级发展的。因为这六个层面的发展是由低到高的过程,越高级别,就需要越深入地了解相应的知识。应用软件是最浅层面的,只需要了解最基础的软件知识和程序编写技术。而到容灾备份这个层面,需要了解的知识更多,不仅包括网络传输协议、数据库的知识还包括操作系统、带库等各种知识。所以当没有掌握相关的知识之前,是无法越级发展下一个阶段的技术革新的。
在容灾备份市场上,外国公司几乎占据了超过80%的市场份额。emc公司是全球信息存储及管理产品、服务和解决方案方面的领先公司。世界上最重要信息中的2/3以上都是通过emc的解决方案管理的。而另一存储巨头ibm近期发布了ibm中小企业存储市场战略和ibm最新推出的融简单、易用、经济为一体的产品。
我国目前在应用软件和网络安全维护方面已经做得不错,国内有一些发展很好的企业,比如,浪潮、华为、同有科技等,经过几年时间的市场锤炼,国内厂商表现出相当的实力和竞争力。
在容灾备份层面,是正在发展的时期。做不好容灾备份这个层面,想做数据库是几乎不可能的。因为没有发展完整的产业链,容灾备份没有做到国产化,与数据库兼容,那么数据库就好像空中楼阁,根本无法正常运转,这就是产业和技术发展的规律,从这个层面上说,备份是数据的最后一道防线。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29