京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网+时代:大数据安全面临的机遇与挑战
数据的爆发式增长和社会化趋势是大数据产生的本质原因。
大数据并不是量大,它有四个基本的特征:更大规模的数据、更多样化的数据、更加实时的数据、价值密度低商业价值高。我们可以看到一个现象,在之前有很多可以存、可以不保存的数据;而在大数据时代,即便我没有办法保存数据,也一定要把它保存起来,大家都知道数据就是价值,就是权力。
大数据的三大精髓:模糊替代精确、相关性替代因果性、全集代替样本。比如通过一个人的微信朋友圈可以基本知道这个人的工作、生活,甚至家庭、兴趣爱好;再看看这个人的朋友圈谁跟谁相互点赞,就能了解简单的社会关系,这就是大数据的相关性。其次,我们过去的科学研究方法,在没有理论基础的条件下选择抽取样本,放进自己的理论中进行相关的推断;现在大数据的方法是,不需要、不去看样本,而是要看到所有的数据,现在有了超算,就可以把数据的全局拿来分析。
大数据作为生产力,不仅要从经济层面对其进行推动,还需要社会层面为之付出努力。新一届政府提出在提高政府的治理能力、转变政府职能的前提下,要通过现代信息技术提高政府的治理能力。也就是说,政府为在执政过程中更加科学,就要有大数据作为支撑,让大数据成为一些决策制定的合理依据。
为什么要把发展大数据上升为国家战略呢?拿发放低保为例,比如公安部、民政部的数据无法提供给人社部使用,如果要为一个低保人员发放补贴,目前的做法,需要这个人提交申请,再去各个部门开证明,每个证明都要加盖公章。但是真正需要被救助的人往往缺乏相关的社会关系,也不了解申请的流程;由于数据的孤立,也让一部分人有钻政策空子办理低保的机会。
如果各部门的数据可以共享,那么发放低保这样的事儿操作起来就容易得多。比如看申请人名下的存款、汽车、家庭成员构成如何、每月生活必须消费支出如何等方面的数据,就可以为那些真正需要帮助的人发放低保补贴。目前这些数据信息分属不同的部门掌握,社保部门想调用这些信息是做不到的。只有把大数据的利用上升为国家战略,由国家整体协调推动政府各部门信息公开,才能极大地提高政府的执政效率和管理能力。
如今,黑客入侵的目的更多是要偷有价值的数据。就像小偷入室盗窃一样,有多少贼是开启防盗门进屋偷东西的?恐怕不足百分之一。防盗门做得再好,小偷可以从窗户进来,可以破墙而入。只要小偷能够进来,就会失窃,那么再好的防盗门都将失去意义。所以,现在我们要认识到的数据安全就是让黑客即使入侵系统也拿不走数据,即便拿走了数据也无法使用。这才是数据安全防护的较高境界。
大数据安全层次主要分为六个层面:应用软件、网络安全防护、容灾备份系统工具、数据库、操作系统和cpu。
这六个层面的发展是不能越级发展的。因为这六个层面的发展是由低到高的过程,越高级别,就需要越深入地了解相应的知识。应用软件是最浅层面的,只需要了解最基础的软件知识和程序编写技术。而到容灾备份这个层面,需要了解的知识更多,不仅包括网络传输协议、数据库的知识还包括操作系统、带库等各种知识。所以当没有掌握相关的知识之前,是无法越级发展下一个阶段的技术革新的。
在容灾备份市场上,外国公司几乎占据了超过80%的市场份额。emc公司是全球信息存储及管理产品、服务和解决方案方面的领先公司。世界上最重要信息中的2/3以上都是通过emc的解决方案管理的。而另一存储巨头ibm近期发布了ibm中小企业存储市场战略和ibm最新推出的融简单、易用、经济为一体的产品。
我国目前在应用软件和网络安全维护方面已经做得不错,国内有一些发展很好的企业,比如,浪潮、华为、同有科技等,经过几年时间的市场锤炼,国内厂商表现出相当的实力和竞争力。
在容灾备份层面,是正在发展的时期。做不好容灾备份这个层面,想做数据库是几乎不可能的。因为没有发展完整的产业链,容灾备份没有做到国产化,与数据库兼容,那么数据库就好像空中楼阁,根本无法正常运转,这就是产业和技术发展的规律,从这个层面上说,备份是数据的最后一道防线。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27