
如何使用Excel规划求解求出最优生长曲线
Excel支持线性近似、多项式近似等六种近似曲线,但是不支持生长曲线。
生长曲线的特征与Product Life cycle(PLc)十分相似,首先缓慢增长,然后急速增长,随后又缓慢增长,最终达到饱和状态,是一种s型曲线。经常用于表示商品销量、广告效果等。
使用规划求解求出最优生长曲线,进行预测。
例题:用最优生长曲线预测
表1是某商店新产品累计销量的数据。根据这些数据,预测从第16周到第24周的累计销量。
表1
成长曲线包括逻辑曲线、龚培子曲线等许多类型。本节使用经常用于预测销量等的逻辑曲线。
逻辑曲线的方程如下:
y=a/(1+6P")
假设商品的累计销量是y,周是z(1,2,3,…,l 5),abc是决定逻辑曲线形状的参数(未知参数)。a表示最终累计销量,b大约是a的1/10,c是0<c<1。
求解参数d.b.c,就是求当实际值和运算结果(用逻辑曲线方程求出的数值)的误差平方的总和最小时的a,b,c的数值。
首先,制作如图1所示的工作表。规划求解可以求出参数a,b,c的数值,但是需要首先设定适当的数值。因为累计销量是190,因此假设a是250,b是25,c是0.5。
图1
接着,输入运算公式。在单元格C8中输入逻辑斯蒂曲线方程。=$B$2/(1+$B$3*EXP(-$B$4*A8))”。EXP是Excel的指数函数。因为参数a,b,c的单元格固定,所以作为绝对引用(添加$)。然后把C8的公式一直复制到C31。
为了求实际销量(实际值)和用公式求出的数值(运算结果)之间的差的平方,即(实际值-运算结果)2,在单元格D8中输入“=(B8一c8)^2”,然后把D8的公式一直复制到D22。
最后,为了求误差平方的总和,在单元格D23中输入公式“=SUMM(D8:D22)”。上述数学公式的设定一览表,如图2所示。
图2
接下来,运行规划求解。单击“工具”-“规划求解”,弹出“规划求解参数”对话框。在“设置目的单元格”中指定显示误差平方总和的单元格D23。在“等于”中选择“最小值”。在“可变单元格”中指定表示参数a,b,c的单元格B2——B4。单击“选项”按钮,在“规划求解选项”对话框中选中“假定非负”。
最后,在“规划求解参数”对话框中单击。求解”按钮,显示如图3所示的结果。
图3
参数a,b,c的值是:a=320.89,b=58.45,c=0.29。因此,最优逻辑曲线方程是:
累计销量=32l/(1十58/5e-0.29*周)
用这个方程计算出第16周到第24周的累计销量的预测值(运算结果)。显示在单元格c23——c31中。将运算结果图表化后如图3所示,从中可以看出。实际值和用规划求解求出的最优逻辑曲线非常稳合。
图4
作为参考,把上述数据用Excel支持的近似曲线中的线性近似和对数近似表示出来,分别如图4和5所示。关于指数近似、幂近似、多项式近似,请读者自己尝试操作。
图5
图6
使用Excel规划求解求出最优生长曲线,还是比较简单的,根据图表我们也可以清楚的看到数据分析预测的情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03