京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用Excel规划求解求出最优生长曲线
Excel支持线性近似、多项式近似等六种近似曲线,但是不支持生长曲线。
生长曲线的特征与Product Life cycle(PLc)十分相似,首先缓慢增长,然后急速增长,随后又缓慢增长,最终达到饱和状态,是一种s型曲线。经常用于表示商品销量、广告效果等。
使用规划求解求出最优生长曲线,进行预测。
例题:用最优生长曲线预测
表1是某商店新产品累计销量的数据。根据这些数据,预测从第16周到第24周的累计销量。
表1
成长曲线包括逻辑曲线、龚培子曲线等许多类型。本节使用经常用于预测销量等的逻辑曲线。
逻辑曲线的方程如下:
y=a/(1+6P")
假设商品的累计销量是y,周是z(1,2,3,…,l 5),abc是决定逻辑曲线形状的参数(未知参数)。a表示最终累计销量,b大约是a的1/10,c是0<c<1。
求解参数d.b.c,就是求当实际值和运算结果(用逻辑曲线方程求出的数值)的误差平方的总和最小时的a,b,c的数值。
首先,制作如图1所示的工作表。规划求解可以求出参数a,b,c的数值,但是需要首先设定适当的数值。因为累计销量是190,因此假设a是250,b是25,c是0.5。
图1
接着,输入运算公式。在单元格C8中输入逻辑斯蒂曲线方程。=$B$2/(1+$B$3*EXP(-$B$4*A8))”。EXP是Excel的指数函数。因为参数a,b,c的单元格固定,所以作为绝对引用(添加$)。然后把C8的公式一直复制到C31。
为了求实际销量(实际值)和用公式求出的数值(运算结果)之间的差的平方,即(实际值-运算结果)2,在单元格D8中输入“=(B8一c8)^2”,然后把D8的公式一直复制到D22。
最后,为了求误差平方的总和,在单元格D23中输入公式“=SUMM(D8:D22)”。上述数学公式的设定一览表,如图2所示。
图2
接下来,运行规划求解。单击“工具”-“规划求解”,弹出“规划求解参数”对话框。在“设置目的单元格”中指定显示误差平方总和的单元格D23。在“等于”中选择“最小值”。在“可变单元格”中指定表示参数a,b,c的单元格B2——B4。单击“选项”按钮,在“规划求解选项”对话框中选中“假定非负”。
最后,在“规划求解参数”对话框中单击。求解”按钮,显示如图3所示的结果。
图3
参数a,b,c的值是:a=320.89,b=58.45,c=0.29。因此,最优逻辑曲线方程是:
累计销量=32l/(1十58/5e-0.29*周)
用这个方程计算出第16周到第24周的累计销量的预测值(运算结果)。显示在单元格c23——c31中。将运算结果图表化后如图3所示,从中可以看出。实际值和用规划求解求出的最优逻辑曲线非常稳合。
图4
作为参考,把上述数据用Excel支持的近似曲线中的线性近似和对数近似表示出来,分别如图4和5所示。关于指数近似、幂近似、多项式近似,请读者自己尝试操作。
图5
图6
使用Excel规划求解求出最优生长曲线,还是比较简单的,根据图表我们也可以清楚的看到数据分析预测的情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01