京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用Excel规划求解求出最优生长曲线
Excel支持线性近似、多项式近似等六种近似曲线,但是不支持生长曲线。
生长曲线的特征与Product Life cycle(PLc)十分相似,首先缓慢增长,然后急速增长,随后又缓慢增长,最终达到饱和状态,是一种s型曲线。经常用于表示商品销量、广告效果等。
使用规划求解求出最优生长曲线,进行预测。
例题:用最优生长曲线预测
表1是某商店新产品累计销量的数据。根据这些数据,预测从第16周到第24周的累计销量。
表1
成长曲线包括逻辑曲线、龚培子曲线等许多类型。本节使用经常用于预测销量等的逻辑曲线。
逻辑曲线的方程如下:
y=a/(1+6P")
假设商品的累计销量是y,周是z(1,2,3,…,l 5),abc是决定逻辑曲线形状的参数(未知参数)。a表示最终累计销量,b大约是a的1/10,c是0<c<1。
求解参数d.b.c,就是求当实际值和运算结果(用逻辑曲线方程求出的数值)的误差平方的总和最小时的a,b,c的数值。
首先,制作如图1所示的工作表。规划求解可以求出参数a,b,c的数值,但是需要首先设定适当的数值。因为累计销量是190,因此假设a是250,b是25,c是0.5。
图1
接着,输入运算公式。在单元格C8中输入逻辑斯蒂曲线方程。=$B$2/(1+$B$3*EXP(-$B$4*A8))”。EXP是Excel的指数函数。因为参数a,b,c的单元格固定,所以作为绝对引用(添加$)。然后把C8的公式一直复制到C31。
为了求实际销量(实际值)和用公式求出的数值(运算结果)之间的差的平方,即(实际值-运算结果)2,在单元格D8中输入“=(B8一c8)^2”,然后把D8的公式一直复制到D22。
最后,为了求误差平方的总和,在单元格D23中输入公式“=SUMM(D8:D22)”。上述数学公式的设定一览表,如图2所示。
图2
接下来,运行规划求解。单击“工具”-“规划求解”,弹出“规划求解参数”对话框。在“设置目的单元格”中指定显示误差平方总和的单元格D23。在“等于”中选择“最小值”。在“可变单元格”中指定表示参数a,b,c的单元格B2——B4。单击“选项”按钮,在“规划求解选项”对话框中选中“假定非负”。
最后,在“规划求解参数”对话框中单击。求解”按钮,显示如图3所示的结果。
图3
参数a,b,c的值是:a=320.89,b=58.45,c=0.29。因此,最优逻辑曲线方程是:
累计销量=32l/(1十58/5e-0.29*周)
用这个方程计算出第16周到第24周的累计销量的预测值(运算结果)。显示在单元格c23——c31中。将运算结果图表化后如图3所示,从中可以看出。实际值和用规划求解求出的最优逻辑曲线非常稳合。
图4
作为参考,把上述数据用Excel支持的近似曲线中的线性近似和对数近似表示出来,分别如图4和5所示。关于指数近似、幂近似、多项式近似,请读者自己尝试操作。
图5
图6
使用Excel规划求解求出最优生长曲线,还是比较简单的,根据图表我们也可以清楚的看到数据分析预测的情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21