
大数据技术面临各方面的挑战
一、大数据信息有效性不足
虽然信息时代使得人们面对的信息规模扩大和沟通效率提高, 但是这并不意味着有价值的数据信息获取就变得更加迅捷和容易。
首先,有价值的数据信息获取面临挑战。网络信息资源在扩大人们信息来源渠道和提高信息获取效率的同时,也不可避免的会促使人们遭受大量虚假、无用数据信息的困扰。信息大爆炸造成的信息环境污染和“噪音信息”的蔓延增加了人们识别、判定和利用有效信息的困难。
其次,有价值的数据信息整合面临挑战。使用大数据面临的一大挑战就是如何将社会经济各个主体之间的数据信息能够方便和有效地整合在一起。要想让大数据更有效地服务于人类社会,就必须将存在于社会各个主体中多种格式的海量数据通过统一的数据格式构建融合人、机、物三元世界的统一信息系统。最后,有价值的数据信息生成存在算法演化问题。在现实中,大数据往往是根据各个社会经济主体行为被动产生的,但是数据生成者的商业模式等行为会影响大数据的生成机制,导致其提供的信息不具有时间前后的可比性。以谷歌公司为例,其商业模式的主要目标是更快速地为使用者提供准确的信息。为此,谷歌不断改进搜索算法,使用者可以通过后续谷歌推荐的相关词快捷地获得有用信息。这一模式改变了数据生成机制,容易出现数据使用者搜索的关键词并非其本意的现象。
二、大数据样本选择困难
人们希望通过海量数据信息的收集减少信息不对称,但是这些庞大的数据可能对我们解决问题并不会起到正面的作用。当前,大数据使企业或者机构获取每一个客户的信息、构建客户群的总体数据成为可能。但是,这种大数据并不一定就是我们所要研究对象的全部数据总体。如果我们误将掌握的海量数据当作所要研究对象的数据总体,那么基于大数据分析得出的结论就很有可能是错误的。因此,在分析和研究某个问题时,我们不能迷信大数据的作用。
以“谷歌流感趋势”(GFT) 项目为例,2008 年11 月谷歌公司启动该项目,目标是预测美国疾控中心(CDC) 报告的流感发病率。2009 年,GFT 团队在《自然》杂志发表文章报告,只需分析数十亿搜索中45 个与流感相关的关键词,GFT 就能比CDC 提前两周预报2007-2008 季流感的发病率。但是,2014 年美国《科学》杂志报道,2009 年GFT 没有能预测到非季节性流感A-H1N1;从2011 年8 月到2013 年8 月的108 周里,GFT 有100 周高估了CDC 报告的流感发病率。其中,2011-2012 季期间,GFT 预测的发病率是CDC 报告值的1.5 倍多;2012-2013 季期间,GFT 流感发病率是CDC 报告值的2 倍多。另外,2007 年美国爆发的次贷危机也是一个例证。自20 世纪90 年代起, 美国无论是抵押贷款和信用卡的申请还是资产证券化产品的定价和评级,都是建立在较为成熟的大数据基础上的。但是,金融机构仍然做出了系统性错误的金融决策,成为金融危机爆发的导火索。
三、大数据数据处理技术更新缓慢
大数据虽然可以通过扩大数据样本规模和提升数据处理能力来管理日常经营性的风险,但是代表金融创新风险等未来事件是无法用历史数据进行预测和分析的。
首先,大数据处理技术面临数据生成者学习行为的挑战。大数据处理技术和评估标准影响数据生成者行为,同样数据生成者行为也会影响大数据处理技术和评估标准。以我国大数据重要来源之一的社交媒体为例,这种大数据来源的有效性是有前提条件的,即人们在社交媒体分享的信息都是真实的、自发的、不受大数据处理技术和各种评估标准的影响。但是,人们在互联网时代运用网络学习的能力是不断提高的。如果人们通过学习大数据处理技术和各种评估标准而相应改变社交媒体的信息,就会导致大数据生成机制发生质变。因此,在对大数据进行技术处理时,简单地认为数据生成者都是无意识地生产大数据,忽略了数据生产者行为背后趋利避害的动机,可能就会得出错误的判断和结论。
其次,大数据处理技术面临去冗降噪挑战。在现实中,大数据一般来自于不同的社会主体,以动态数据流的形式产生,人们在方便获取数据的同时,也会使得虚假数据、无效数据等噪声数据的生产成本降低。面对大数据中包含众多不同形态的噪声数据,如何通过数据处理技术的革新来挖掘有价值的信息是我们自始至终都要面临的一项技术挑战。这如同人类社会医学技术创新与病毒变异之间的“竞赛”一样是长期存在的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08