
一文学会如何用Excel做回归分析
一、什么是回归分析法
“回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变量)”。清楚了回归分析的目的后,下面我们以回归分析预测法的步骤来说明什么是回归分析法:
1.根据预测目标,确定自变量和因变量
明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。
2.建立回归预测模型
依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3.进行相关分析
什么是回归分析法回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
4.检验回归预测模型,计算预测误差
回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
5.计算并确定预测值
利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
二、回归分析的目的
回归分析的目的大致可分为两种:
第一,“预测”。预测目标变量,求解目标变量y和说明变量(x1,x2,…)的方程。
y=a0+b1x1+b2x2+…+bkxk+误差(方程A)
把方程A叫做(多元)回归方程或者(多元)回归模型。a0是y截距,b1,b2,…,bk是回归系数。当k=l时,只有1个说明变量,叫做一元回归方程。根据最小平方法求解最小误差平方和,非求出y截距和回归系数。若求解回归方程.分別代入x1,x2,…xk的数值,预测y的值。
第二,“因子分析”。因子分析是根据回归分析结果,得出各个自变量对目标变量产生的影响,因此,需要求出各个自变量的影响程度。
希望初学者在阅读接下来的文章之前,首先学习一元回归分析、相关分析、多元回归分析、数量化理论I等知识。
根据最小平方法,使用Excel求解y=a+bx中的a和b。那么什么是最小平方法?
分别从散点图的各个数据标记点,做一条平行于y轴的平行线,相交于图中直线(如下图)
平行线的长度在统计学中叫做“误差”或者‘残差”。误差(残差)是指分析结果的运算值和实际值之间的差。
接这,求平行线长度曲平方值。可以把平方值看做边长等于平行线长度的正方形面积(如下图)
最后,求解所有正方形面积之和。确定使面积之和最小的a(截距)和b(回归系数)的值(如下图)。
使用Excel求解回归方程;“工具”→“数据分析”→“回归”,具体操作步骤将在后面的文章中具体会说明。
三、回归分析案例
接着上节的回归分析的目的,我们来根据一个二手车的实例来继续说回归分析。
二手车价格的决定因素有:空调类型有无附加品(TV导航导航SR、天窗、空气囊LD TV AW) 行驶距离,颜色车检剩余有效月数、评分拍卖会地点等。
在这14个因子(说明变量)中,最影响价格(目标变量)的是什么?最不影响价格的是什么?通过定量求出影响度,然后根据多个因子(说明变量)预测二手车价格(目标变量)。
可以用方程2表示。二手车价格“这个目标变量数据,既(“空调类型(AC WC)” “有无TV导航”、 、“行驶距离”、 。车检剩余有效月数”, “评分”)。
混合模型
混台模型是指因子巾既包含定性数据也包含定量数据的模型。在混台模型中.把“空调”、 “TV导航”等定性因子叫做项目,把数据群(空调的“AC”,“WAC”,TV导航的“有”、“无”)叫做类别。
接下来,根据表l进行回归分析。
这节我们主要告诉大家回归分析前,我们需要先根据自己的思维来了解分析,把这些需要注意的先分析出来,这样对我们接下来的回归分析有很大的帮助。
四、Excel回归分析需要注意的事项
经过上节,我们了解了回归分析前,我们要先通过思维分析出来需要注意的事项,那么今天接着上一节的课来了解下Excel回归分析需要注意的事项。包含的定性数据,不能直接使用Excel分析,需要将其转换成虚拟变量(也叫O,1数据)。例如, “空调(AC、WAC)”的数据,“AC”用“1”,“WAC"用“O”表示。同样地,“导航(有导航、无导航)”的数据, “有导航”用“1”, “无导航”用“O”表示。表1是根据这种方法转换的(0,1)数据表。
直接使用Excel的对表1进行回归分析时,运算结果不理想。理由如下;
以“导航”为例,各行
“有导航”+“无导航”=1
此式成立。把公式变形,
“有导航”=1-“无导航”
所以“有导航”是“0”或是“1”,由“无导航。自动决定。
线性代数中发生秩(矩阵秩)亏时,不能正确求出必要的逆矩阵。因此也不能求出回归系数。
由于上述原因,进行回归分析时,需要从各个项目中删除—列因子(表2)。
根据表2的数据进行回归分析,操作步骤如下:
1、“工具”一“数据分析”
2、在弹出的“数据分析”对话框中选择“回归”,单击“确定”(图1)。
3、点击“回归”对话框的“Y值输入区域”,选择“二手车价格”的列数据,包括项目名称;接着点击“X值输入区域”,选择从“AC”到“中国、四国、九州”的区域,包括项目名称;选中。标志”,单击“确定”。(图2)
系统弹出错误信息,不能进行回归分析(图3)。这是因为Excel回归自由度的最大上限是16(P62小知识)。这里的回归自由度是22,因此不能进行回归分析。
统计学中经常出现“自由度”,即有效信息的数量。
前面已经提到,在Excel的回归分析中,回归自由度的最大上限是16。回归自由度在(多重)回归分析、数量化理论|、混合模型中具有不同意义。表3是对回归自由度的不同意义的总结。
五、分两次进行回归分析
我们在前面提到过,当回归自由度在17以上时,Excel无法进行回归分析,那么就需要分两次进行回归分析。第一次,把“空调”、“TV导航”、“导航”、“SR”、“天窗”、“空气囊”、“LD”、“TV”、“AW”作为说明变量(表1),第二次,把“颜色”、“拍卖会地点”、“行驶距离”、“车检剩余有效月数”、“评分”作为说明变量(表2),目标变量都是“二手车价格”。
对表1、表2进行回归分析。回归分析的结果分别如表3、表4所示(具体操作步骤将在下一节详细说明)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29