京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据时代,商业模式正发生大变革
大数据的“喧闹”已有几年,业界认为,现在是认真冷静下来思考一些关于大数据根本性问题的时候了。近日,国内专注于大数据应用产品的“据说研究院”负责人接受本报采访时表示,大数据的根本性价值是破解人类信息不对称的千年难题,未来或将有一种主流的商品,那就是数据应用商品。
《华夏时报》:大数据的根本性作用是什么?
据说研究院:人类长期所处的物理世界中,一直受制于时空限制,产生的数据极为有限,导致信息不对称的现象十分严重。信息不对称成为人类的根本性困局,人类不断地为这个困局而搏斗着。知情权权利声索、博弈论理论衍生、信息经济学创立等,都是人类与该根本性困局难题进行斗争的体现。随着信息技术的深入发展,地球上的任何人、任何事、任何物都可能时时刻刻产生大量数据,传统的物理世界将可以通过数据世界来展现,人类可以透过数据世界更加清晰真切地认识熟悉而陌生的物理世界,信息不对称的难题将因此获得破解。因此,应该说,大数据的根本性价值是破解人类信息不对称的千年难题。
《华夏时报》:对于大数据,普通大众最应该关注什么?
据说研究院:大数据包括的范围比较广泛,如果必须按照传统产业链的思维来划分,可以包括以技术为中心的平台层(并行构架和资源平台,即硬件层面)、系统层面(大数据存储管理和并行编程模型与计算框架)、算法层(基础算法和应用算法)和应用层(应用开发和行业应用),以及以数据规划、数据采集、数据清洗、数据标注、数据挖掘、数据分析和数据应用为基础的数据产品层面。当然,数据产品层面又包括数据交易、数据应用和数据服务等方面。事实上,数据产品层面,是大数据产业最具价值的环节,也是与我们普通大众比较接近的部分,普通大众关注这一环节就足矣。
《华夏时报》:大数据为何会改变人类思维?
据说研究院:几千年来,人类都是“因果性思维”,这是小数据时代的有限数据所致,面对数量有限的结构化数据,人类不仅能够知道“是什么”,也能够知道“为什么”,相关性思维仅仅留存于侦察思维和中医思维(《易经》)的狭小领域里。但是,当面对日益剧增的海量数据和绝大部分都是非结构化数据时,人类的因果性思维显得更加苍白无力,仅仅靠人脑,人类不仅不知道“是什么”,也不知道 “为什么”。因此,人类必须从几千年来 “因果性思维” 的桎梏中解脱出来,转变为“相关性思维”。同时,由于大数据时代的来临,企业间边界、产业间边界、线上和线下的边界等都正在快速消除,跨界融合正在成为主流,因此,人类也只有转变为“跨界”的相关性思维,才能够适应时代的变化。
《华夏时报》:怎么理解“数据驱动一切”?
据说研究院:“数是万物的本原”,事物的本质和规律隐藏在各种原始数据的相互关联之中。对同一个问题,不同的数据能提供互补信息,通过相关性思维,让不同“维度”的海量数据“关联”起来,从而实现对物理世界的真实认识。大数据通过“量化一切”而实现世界的数据化,并由此改变人类认知和理解世界的方式,同时带来全新的大数据世界观。因此,当地球上的一切将可能产生数据时,数据将成为未来重要的生产资源甚至战略资源,未来所有的行业都会是“大数据+”,人类必须适应“数据驱动一切”的改变, 并且,这个未来并不遥远。
《华夏时报》:大数据真能创造一个“多维世界”吗?
据说研究院:人类目前同时处于物理世界、网络世界和数据世界之中,只不过每一个人在不同世界的“存在感”不一样罢了,也正是三个世界将人类重新分割开来,有人仅仅能够理解物理世界的事情,难以理解网络世界和数据世界的事情;也有人仅仅能够理解物理世界和网络世界的事情,对于数据世界往往并不理解。当然,处于不同世界的人,其思维方式和行为方式都是有差异的,所导致的结果往往也是完全不一样的。很显然,既然三个世界是同时客观存在的,我们就应该真切拥抱这三个世界,不可偏废,更不可拒绝。我们应该在三个并行世界中游走、思维、管理、创新、构建商业模式和产业模式。
《华夏时报》:在大数据时代,商业模式为何都会发生变革?
据说研究院:传统的物理世界,因为时空限制信息是严重不对称的,我们以往所有的商业模式都是基于信息不对称的物理世界而建立的,很多商业模式都是因为赚取信息不对称的钱而存活,如电视台、报纸、网络等广告模式,再比如工厂以企业为中心生产各种商品出售,还有传统金融机构仅仅依赖于抵押贷款,以流量驱动下的传统电子商务等。当地球上的人、事、物都因为产生大量数据而构建起“关系”,让人类顷刻间获得了无限的信息对称,一切基于信息不对称的物理世界而建立的商业模式势必获得变革,这也是不得不面临的变革。未来,主流的商业模式将是以大数据为基础的产业互联网。主流的创新模式将是在物理世界、网络世界和数据世界中自由穿行的创新,未来会有一种主流的商品,那就是数据应用商品。
《华夏时报》:数据世界究竟离我们有多远?
据说研究院:应该说,数据世界就存在于我们面前,无论你“识”还是“不识”,它就在那里。这要根据每一个人在多维世界的“存在感”进行区别。认为数据世界很遥远的,是因为在数据世界的“存在感”较差;认为数据世界就在眼前的,是因为他就在数据世界中或者他正在构建数据世界的“施工现场”。
当然,数据世界并非自己就能够自动建立的,需要我们人类以往的思维方式、行为方式、决策方式、商业模式、产业模式和管理模式等发生变化,而这种变化是痛苦的。但是无论如何痛苦,历史不会因为某些人的痛苦而停下它不可阻挡的时代洪流。面对“数据世界”的建立,世界各国近乎站在同一个起跑线上,任何一个国家的怠慢和无知,都将为此付出十分沉重的代价。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22